Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes

An Erratum to this article was published on 01 February 2016

Abstract

Nanostructuring has been shown to be fruitful in addressing the problems of high-capacity Si anodes. However, issues with the high cost and poor Coulombic efficiencies of nanostructured Si still need to be resolved. Si microparticles are a low-cost alternative but, unlike Si nanoparticles, suffer from unavoidable particle fracture during electrochemical cycling, thus making stable cycling in a real battery impractical. Here we introduce a method to encapsulate Si microparticles (1–3 µm) using conformally synthesized cages of multilayered graphene. The graphene cage acts as a mechanically strong and flexible buffer during deep galvanostatic cycling, allowing the microparticles to expand and fracture within the cage while retaining electrical connectivity on both the particle and electrode level. Furthermore, the chemically inert graphene cage forms a stable solid electrolyte interface, minimizing irreversible consumption of lithium ions and rapidly increasing the Coulombic efficiency in the early cycles. We show that even in a full-cell electrochemical test, for which the requirements of stable cycling are stringent, stable cycling (100 cycles; 90% capacity retention) is achieved with the graphene-caged Si microparticles.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Design and structure of graphene cage encapsulation.
Figure 2: Synthesis and characterization of graphene cage structure.
Figure 3: Particle-level characterization of graphene cage by in situ TEM.
Figure 4: In situ TEM observation of graphene cage Si lithiation.
Figure 5: Electrochemical characterization of graphene cage Si anodes.

References

  1. 1

    Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  2. 2

    Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  3. 3

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  4. 4

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    Article  Google Scholar 

  5. 5

    Yang, S., Zavalij, P. Y. & Whittingham, M. S. Anodes for lithium batteries: tin revisited. Electrochem. Commun. 5, 587–590 (2003).

    Article  Google Scholar 

  6. 6

    Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  7. 7

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nature Commun. 6, 6362 (2015).

    Article  Google Scholar 

  8. 8

    Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    Article  Google Scholar 

  9. 9

    Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).

    Article  Google Scholar 

  10. 10

    Lu, Y.-C., Gasteiger, H. A., Crumlin, E., McGuire, R. & Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J. Electrochem. Soc. 157, A1025 (2010).

    Google Scholar 

  11. 11

    Seh, Z. W. et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Commun. 4, 1331 (2013).

    Article  Google Scholar 

  12. 12

    Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137–A140 (2001).

    Article  Google Scholar 

  13. 13

    Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93–A96 (2004).

    Article  Google Scholar 

  14. 14

    Obrovac, M. N., Christensen, L., Le, D. B. & Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007).

    Article  Google Scholar 

  15. 15

    Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H. & Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2008).

    Article  Google Scholar 

  16. 16

    Zhou, S., Liu, X. & Wang, D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 10, 860–863 (2010).

    Article  Google Scholar 

  17. 17

    Yao, Y. et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).

    Article  Google Scholar 

  18. 18

    Park, M.-H. et al. Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009).

    Article  Google Scholar 

  19. 19

    Xiao, J. et al. Stabilization of silicon anode for Li-ion batteries. J. Electrochem. Soc. 157, A1047–A1051 (2010).

    Article  Google Scholar 

  20. 20

    Yi, R., Dai, F., Gordin, M. L., Chen, S. & Wang, D. Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295–300 (2013).

    Article  Google Scholar 

  21. 21

    Ge, M., Rong, J., Fang, X. & Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012).

    Article  Google Scholar 

  22. 22

    Lu, Z. et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540–2547 (2015).

    Article  Google Scholar 

  23. 23

    Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).

    Article  Google Scholar 

  24. 24

    Ji, L. et al. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 1, 164–171 (2012).

    Article  Google Scholar 

  25. 25

    Ren, J. et al. Silicon–graphene composite anodes for high-energy lithium batteries. Energy Technol. 1, 77–84 (2013).

    Article  Google Scholar 

  26. 26

    Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Commun. 6, 7393 (2015).

    Article  Google Scholar 

  27. 27

    Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech. 7, 310–315 (2012).

    Article  Google Scholar 

  28. 28

    Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).

    Article  Google Scholar 

  29. 29

    Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014).

    Article  Google Scholar 

  30. 30

    Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    Article  Google Scholar 

  31. 31

    Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Commun. 4, 1943 (2013).

    Article  Google Scholar 

  32. 32

    Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem. 5, 1042–1048 (2013).

    Article  Google Scholar 

  33. 33

    Kim, H., Seo, M., Park, M. & Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010).

    Article  Google Scholar 

  34. 34

    Lee, S. W., McDowell, M. T., Choi, J. W. & Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011).

    Article  Google Scholar 

  35. 35

    Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

    Article  Google Scholar 

  36. 36

    McMillan, R., Slegr, H., Shu, Z. X. & Wang, W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 81–82, 20–26 (1999).

    Article  Google Scholar 

  37. 37

    Profatilova, I. A., Kim, S.-S. & Choi, N.-S. Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochim. Acta 54, 4445–4450 (2009).

    Article  Google Scholar 

  38. 38

    Jeong, S.-K. et al. Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir 17, 8281–8286 (2001).

    Article  Google Scholar 

  39. 39

    Schlesinger, M. & Paunovic, M. Modern Electroplating Vol. 55 (Wiley, 2011).

    Google Scholar 

  40. 40

    Nagakura, S. Study of metallic carbides by electron diffraction part I. Formation and decomposition of nickel carbide. J. Phys. Soc. Jpn 12, 482–494 (1957).

    Article  Google Scholar 

  41. 41

    Yoon, S.-M. et al. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803–6811 (2012).

    Article  Google Scholar 

  42. 42

    Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).

    Article  Google Scholar 

  43. 43

    Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    Article  Google Scholar 

  44. 44

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  Google Scholar 

  45. 45

    McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).

    Article  Google Scholar 

  46. 46

    Smith, A. J., Burns, J. C., Trussler, S. & Dahn, J. R. Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries. J. Electrochem. Soc. 157, A196–A202 (2010).

    Article  Google Scholar 

  47. 47

    Chou, S.-L. et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 12, 303–306 (2010).

    Article  Google Scholar 

  48. 48

    Xiang, H. et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49, 1787–1796 (2011).

    Article  Google Scholar 

  49. 49

    Zhou, X., Yin, Y., Wan, L. & Guo, Y. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2, 1086–1090 (2012).

    Article  Google Scholar 

  50. 50

    Luo, J. et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012).

    Article  Google Scholar 

  51. 51

    Lee, H., Dellatore, S. M., Miller, W. M. & Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  Google Scholar 

  52. 52

    Liu, J. et al. Extension of the Stöber Method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).

    Article  Google Scholar 

  53. 53

    Li, N. et al. Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem. Commun. 49, 5135–5137 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Y.L. acknowledges the National Science Foundation Graduate Fellowship Program for funding and M. Hanna for fruitful discussions. H.-W.L. acknowledges the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (contract no. 2012038593). Y.C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research (BMR) Program.

Author information

Affiliations

Authors

Contributions

Y.L., K.Y. and Y.C. conceived and designed the experiments. Y.L. and K.Y. carried out materials synthesis and electrochemical characterization. Z.L. and N.L. participated in part of the synthesis and materials characterization. H.-W.L. and Y.L. conducted in situ TEM lithiation and electrical measurements. Y.L., K.Y. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1-13, Supplementary. (PDF 1406 kb)

Supplementary Video 1

External load testing for empty amorphous carbon shell. The fragile coating breaks after only a slight deformation. (MP4 1577 kb)

Supplementary Video 2

External load testing for empty graphene cage. Despite extreme compression, the graphene cage is able to fully collapse its shape and still returns to its original structure after deloading. (MP4 2429 kb)

Supplementary Video 3

Lithiation of a graphene-encapsulated SiMP. Note that the particle expansion and fracture are quite violent and anisotropic. Despite this, the graphene cage remains undamaged and electrically connects the fractured particles within. Movie is x10 speed. (MOV 9095 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, K., Lee, HW. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing