Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease


Melanin has several physiological roles in maintaining health, but, notably, it affects the synthesis of vitamin D. Melanin is the primary determinant of the degree of skin pigmentation and protects the body from harmful ultraviolet radiation. Synthesis of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in the skin, however, is dependent on ultraviolet B light. Highly pigmented skin, to the level found in people of African origin, abrogates almost all ultraviolet-induced 1,25(OH)2D3 synthesis. Numerous animal models and clinical studies have underlined the essential role of vitamin D as a modulator of the different processes of the immune system. Evidence indicates that serum concentrations of 1,25(OH)2D3 and the prevalence of autoimmune diseases in a certain population are associated with the latitude at which that population resides. This article explores the relationship between skin pigmentation, vitamin D and the prevalence of autoimmune disease.

Key Points

  • Skin pigmentation leads to a decrease in vitamin D synthesis in the skin, which in turn reduces serum vitamin D concentration

  • Vitamin D has a restraining effect on the adaptive immune system, reducing the extent of the system's activation and reaction to various external and internal stimuli

  • Vitamin D deficiency has been shown to be associated with various autoimmune diseases

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Map to demonstrate the global prevalence of autoimmune disease.


  1. 1

    Bach JF (2005) Infections and autoimmune diseases. J Autoimmun 25: 74–80

    CAS  Article  Google Scholar 

  2. 2

    Jacobson DL et al. (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84: 223–243

    CAS  Article  Google Scholar 

  3. 3

    Schultz H (2007) From infection to autoimmunity: a new model for induction of ANCA against the bactericidal/permeability increasing protein (BPI). Autoimmun Rev 6: 223–227

    CAS  Article  Google Scholar 

  4. 4

    Zandman-Goddard G and Shoenfeld Y (2002) HIV and autoimmunity. Autoimmun Rev 1: 329–337

    CAS  Article  Google Scholar 

  5. 5

    Zandman-Goddard G et al. (2007) Gender and autoimmunity. Autoimmun Rev 6: 366–372

    CAS  Article  Google Scholar 

  6. 6

    Zifman E et al. (2008) Antioxidants and smoking in autoimmune disease—opposing sides of the seesaw? Autoimmun Rev 8: 165–169

    Article  Google Scholar 

  7. 7

    Krol ES and Liebler DC (1998) Photoprotective actions of natural and synthetic melanins. Chem Res Toxicol 11: 1434–1440

    CAS  Article  Google Scholar 

  8. 8

    Loomis WF (1967) Skin-pigment regulation of vitamin-D biosynthesis in man. Science 157: 501–506

    CAS  Article  Google Scholar 

  9. 9

    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357: 266–281

    CAS  Article  Google Scholar 

  10. 10

    Blum HF (1961) Does the melanin pigment of human skin have adaptive value? An essay in human skin have adaptive value? An essay in human ecology and the evolution of race. Q Rev Biol 36: 50–63

    CAS  Article  Google Scholar 

  11. 11

    Branda RF and Eaton JW (1978) Skin color and nutrient photolysis: an evolutionary hypothesis. Science 201: 625–626

    CAS  Article  Google Scholar 

  12. 12

    Lalueza-Fox C et al. (2005) Neandertal evolutionary genetics: mitochondrial DNA data from the iberian peninsula. Mol Biol Evol 22: 1077–1081

    CAS  Article  Google Scholar 

  13. 13

    Lalueza-Fox C et al. (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 30: 318

    Google Scholar 

  14. 14

    Holick MF (2003) Evolution and function of vitamin D. Recent Results Cancer Res 164: 3–28

    CAS  Article  Google Scholar 

  15. 15

    Kant AK and Graubard BI (2008) Ethnic and socioeconomic differences in variability in nutritional biomarkers. Am J Clin Nutr 87: 1464–1471

    CAS  Article  Google Scholar 

  16. 16

    Kant AK and Graubard BI (2007) Ethnicity is an independent correlate of biomarkers of micronutrient intake and status in American adults. J Nutr 137: 2456–2463

    CAS  Article  Google Scholar 

  17. 17

    Cannell JJ and Hollis BW (2008) Use of vitamin D in clinical practice. Altern Med Rev 13: 6–20

    PubMed  Google Scholar 

  18. 18

    Holick MF (2006) Resurrection of vitamin D deficiency and rickets. J Clin Invest 116: 2062–2072

    CAS  Article  Google Scholar 

  19. 19

    Holick MF (2006) Vitamin D: its role in cancer prevention and treatment. Prog Biophys Mol Biol 92: 49–59

    CAS  Article  Google Scholar 

  20. 20

    Ordonez-Moran P et al. (2005) Vitamin D and cancer: an update of in vitro and in vivo data. Front Biosci 10: 2723–2749

    CAS  Article  Google Scholar 

  21. 21

    DeLuca HF and Cantorna MT (2001) Vitamin D: its role and uses in immunology. FASEB J 15: 2579–2585

    CAS  Article  Google Scholar 

  22. 22

    Banerjee P and Chatterjee M (2003) Antiproliferative role of vitamin D and its analogs—a brief overview. Mol Cell Biochem 253: 247–254

    CAS  Article  Google Scholar 

  23. 23

    Abu-Amer Y and Bar-Shavit Z (1994) Regulation of TNF-alpha release from bone marrow-derived macrophages by vitamin D. J Cell Biochem 55: 435–444

    CAS  Article  Google Scholar 

  24. 24

    Arnson Y et al. (2007) Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis 66: 1137–1142

    CAS  Article  Google Scholar 

  25. 25

    Liu PT et al. (2007) Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179: 2060–2063

    CAS  Article  Google Scholar 

  26. 26

    Mahon BD et al. (2003) The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem 89: 922–932

    CAS  Article  Google Scholar 

  27. 27

    Boonstra A et al. (2001) 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 167: 4974–4980

    CAS  Article  Google Scholar 

  28. 28

    Cantorna MT et al. (1998) 1,25-dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines TGF-beta 1 and IL-4. J Immunol 160: 5314–5319

    CAS  PubMed  Google Scholar 

  29. 29

    van Etten E and Mathieu C (2005) Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 97: 93–101

    CAS  Article  Google Scholar 

  30. 30

    Xue ML et al. (2002) 1 alpha,25-Dihydroxyvitamin D3 inhibits pro-inflammatory cytokine and chemokine expression in human corneal epithelial cells colonized with Pseudomonas aeruginosa. Immunol Cell Biol 80: 340–345

    CAS  Article  Google Scholar 

  31. 31

    Borgogni E et al. (2008) Elocalcitol inhibits inflammatory responses in human thyroid cells and T cells. Endocrinology 149: 3626–3634

    CAS  Article  Google Scholar 

  32. 32

    Liu N et al. (2008) Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology 149: 4799–4808

    CAS  Article  Google Scholar 

  33. 33

    Gorman S et al. (2007) Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J Immunol 179: 6273–6283

    CAS  Article  Google Scholar 

  34. 34

    Linker-Israeli M et al. (2001) Vitamin D(3) and its synthetic analogs inhibit the spontaneous in vitro immunoglobulin production by SLE-derived PBMC. Clin Immunol 99: 82–93

    CAS  Article  Google Scholar 

  35. 35

    Griffin MD et al. (2001) Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA 98: 6800–6805

    CAS  Article  Google Scholar 

  36. 36

    Penna G and Adorini L (2000) 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164: 2405–2411

    CAS  Article  Google Scholar 

  37. 37

    Griffin MD et al. (2000) Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 270: 701–708

    CAS  Article  Google Scholar 

  38. 38

    Helming L et al. (2005) 1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 106: 4351–4358

    CAS  Article  Google Scholar 

  39. 39

    Autier P and Gandini S (2007) Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 167: 1730–1737

    CAS  Article  Google Scholar 

  40. 40

    Freedman DM et al. (2008) Serum levels of vitamin D metabolites and breast cancer risk in the prostate, lung, colorectal and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 17: 889–894

    CAS  Article  Google Scholar 

  41. 41

    Holick MF (2005) Vitamin D: important for prevention of osteoporosis, cardiovascular heart disease, type 1 diabetes, autoimmune diseases, and some cancers. South Med J 98: 1024–1027

    Article  Google Scholar 

  42. 42

    Ng K et al. (2008) Circulating 25-hydroxyvitamin D levels and survival in patients with colorectal cancer. J Clin Oncol 26: 2984–2991

    CAS  Article  Google Scholar 

  43. 43

    Cantorna MT (2006) Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog Biophys Mol Biol 92: 60–64

    CAS  Article  Google Scholar 

  44. 44

    Podolsky DK (1991) Inflammatory bowel disease (1). N Engl J Med 325: 928–937

    CAS  Article  Google Scholar 

  45. 45

    Sonnenberg A and Wasserman IH (1991) Epidemiology of inflammatory bowel disease among U.S. military veterans. Gastroenterology 101: 122–130

    CAS  Article  Google Scholar 

  46. 46

    Lamb EJ et al. (2002) Metabolic bone disease is present at diagnosis in patients with inflammatory bowel disease. Aliment Pharmacol Ther 16: 1895–1902

    CAS  Article  Google Scholar 

  47. 47

    Jahnsen J et al. (2002) Vitamin D status, parathyroid hormone and bone mineral density in patients with inflammatory bowel disease. Scand J Gastroenterol 37: 192–199

    CAS  Article  Google Scholar 

  48. 48

    Froicu M et al. (2003) A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol 17: 2386–2392

    CAS  Article  Google Scholar 

  49. 49

    Kamen L et al. (2006) Vitamin D deficiency in systemic lupus erythematosus. Autoimmun Rev 5: 114–117

    CAS  Article  Google Scholar 

  50. 50

    Acheson ED et al. (1960) Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr Scand Suppl 35: S132–S147

    Article  Google Scholar 

  51. 51

    Nieves J et al. (1994) High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology 44: 1687–1692

    CAS  Article  Google Scholar 

  52. 52

    Munger KL et al. (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296: 2832–2838

    CAS  Article  Google Scholar 

  53. 53

    Munger KL et al. (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62: 60–65

    CAS  Article  Google Scholar 

  54. 54

    Goldberg P et al. (1986) Multiple sclerosis: decreased relapse rate through dietary supplementation with calcium, magnesium and vitamin D. Med Hypotheses 21: 193–200

    CAS  Article  Google Scholar 

  55. 55

    Spach KM et al. (2006) IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 177: 6030–6037

    CAS  Article  Google Scholar 

  56. 56

    Hypponen E et al. (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358: 1500–1503

  57. 57

    No authors listed (1999) Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus: the EURODIAB Substudy 2 Study Group [German]. Diabetologia 42: 51–54

  58. 58

    Aguado P et al. (2000) Low vitamin D levels in outpatient postmenopausal women from a rheumatology clinic in Madrid, Spain: their relationship with bone mineral density. Osteoporos Int 11: 739–744

    CAS  Article  Google Scholar 

  59. 59

    Cutolo M et al. (2007) Vitamin D in rheumatoid arthritis. Autoimmun Rev 7: 59–64

    CAS  Article  Google Scholar 

  60. 60

    Orbach H et al. (2007) Novel biomarkers in autoimmune diseases: prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann NY Acad Sci 1109: 385–400

    CAS  Article  Google Scholar 

  61. 61

    Friedman AW et al. (1999) Systemic lupus erythematosus in three ethnic groups: IV. Factors associated with self-reported functional outcome in a large cohort study: LUMINA Study Group: Lupus in Minority Populations, Nature versus Nurture. Arthritis Care Res 12: 256–266

    CAS  Article  Google Scholar 

  62. 62

    Alarcon GS et al. (1999) Systemic lupus erythematosus in three ethnic groups: III. A comparison of characteristics early in the natural history of the LUMINA cohort: LUpus in MInority populations: NAture vs. Nurture. Lupus 8: 197–209

    CAS  Article  Google Scholar 

  63. 63

    George A and Ogunbiyi A (2005) Systemic lupus erythematosus: a rarity in West Africa, or a yet to be investigated entity. Lupus 14: 924–925

    CAS  Article  Google Scholar 

  64. 64

    Symmons DP (1995) Frequency of lupus in people of African origin. Lupus 4: 176–178

    CAS  Article  Google Scholar 

  65. 65

    Klein RG et al. (1977) Intestinal calcium absorption in exogenous hypercortisonism. Role of 25-hydroxyvitamin D and corticosteroid dose. J Clin Invest 60: 253–259

    CAS  Article  Google Scholar 

  66. 66

    Carvalho JF et al. (2007) Anti-vitamin D, vitamin D in SLE: preliminary results. Ann NY Acad Sci 1109: 550–557

    CAS  Article  Google Scholar 

  67. 67

    Abe J et al. (1990) Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1 alpha,25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo) 36: 21–31

    CAS  Article  Google Scholar 

  68. 68

    Alamanos Y and Drosos AA (2005) Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 4: 130–136

    Article  Google Scholar 

  69. 69

    Karlinger K et al. (2000) The epidemiology and the pathogenesis of inflammatory bowel disease. Eur J Radiol 35: 154–167

    CAS  Article  Google Scholar 

  70. 70

    Petri M (2002) Epidemiology of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 16: 847–858

    Article  Google Scholar 

  71. 71

    Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22: 117–139

    CAS  Article  Google Scholar 

  72. 72

    Shoenfeld Y et al. (2008) The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases. Isr Med Assoc J 10: 8–12

    PubMed  Google Scholar 

  73. 73

    Amital H et al. (2006) Reshaping the mosaic of autoimmunity. Semin Arthritis Rheum 35: 341–343

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yehuda Shoenfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shoenfeld, N., Amital, H. & Shoenfeld, Y. The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat Rev Rheumatol 5, 99–105 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing