Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photoimmunology: how ultraviolet radiation affects the immune system

Abstract

Ultraviolet (UV) radiation is a ubiquitous component of the environment that has important effects on a wide range of cell functions. Short-wavelength UVB radiation induces sunburn and is a potent immunomodulator, yet longer-wavelength, lower-energy UVA radiation also has effects on mammalian immunity. This Review discusses current knowledge regarding the mechanisms by which UV radiation can modify innate and adaptive immune responses and how this immunomodulatory capacity can be both beneficial in the case of inflammatory and autoimmune diseases, and detrimental in the case of skin cancer and the response to several infectious agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: UVR absorption by chromophores and damage recognition.
Fig. 2: Mechanisms of UVR-induced immunomodulation.
Fig. 3: The innate immune response is stimulated by the release of damage-associated molecular patterns following exposure to UVR.

Similar content being viewed by others

References

  1. Greene, M. I., Sy, M. S., Kripke, M. & Benacerraf, B. Impairment of antigen-presenting cell function by ultraviolet radiation. Proc. Natl Acad. Sci. USA 76, 6591–6595 (1979).

    CAS  PubMed  Google Scholar 

  2. Schwarz, T., Urbanska, A., Gschnait, F. & Luger, T. A. Inhibition of the induction of contact hypersensitivity by a UV-mediated epidermal cytokine. J. Invest. Dermatol. 87, 289–291 (1986).

    CAS  PubMed  Google Scholar 

  3. Breuer, J. et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann. Neurol. 75, 739–758 (2014).

    CAS  PubMed  Google Scholar 

  4. Toews, G. B., Bergstresser, P. R. & Streilein, J. W. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J. Immunol. 124, 445–453 (1980).

    CAS  PubMed  Google Scholar 

  5. De Fabo, E. C. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health. Int. J. Circumpolar Health 64, 509–522 (2005).

    PubMed  Google Scholar 

  6. Halliday, G. M. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat. Res. 571, 107–120 (2005).

    CAS  PubMed  Google Scholar 

  7. Ullrich, S. E. Mechanisms underlying UV-induced immune suppression. Mutat. Res. 571, 185–205 (2005).

    CAS  PubMed  Google Scholar 

  8. Nghiem, D. X. et al. Ultraviolet a radiation suppresses an established immune response: implications for sunscreen design. J. Invest. Dermatol. 117, 1193–1199 (2001).

    CAS  PubMed  Google Scholar 

  9. Moyal, D. D. & Fourtanier, A. M. Broad-spectrum sunscreens provide better protection from the suppression of the elicitation phase of delayed-type hypersensitivity response in humans. J. Invest. Dermatol. 117, 1186–1192 (2001).

    CAS  PubMed  Google Scholar 

  10. Byrne, S. N., Spinks, N. & Halliday, G. M. Ultraviolet A irradiation of C57BL/6 mice suppresses systemic contact hypersensitivity or enhances secondary immunity depending on dose. J. Invest. Dermatol. 119, 858–864 (2002).

    CAS  PubMed  Google Scholar 

  11. Kim, T. H., Ullrich, S. E., Ananthaswamy, H. N., Zimmerman, S. & Kripke, M. L. Suppression of delayed and contact hypersensitivity responses in mice have different UV dose responses. Photochem. Photobiol. 68, 738–744 (1998).

    CAS  PubMed  Google Scholar 

  12. Matthews, Y. J., Halliday, G. M., Phan, T. A. & Damian, D. L. Wavelength dependency for UVA-induced suppression of recall immunity in humans. J. Dermatol. Sci. 59, 192–197 (2010).

    CAS  PubMed  Google Scholar 

  13. Grether-Beck, S. et al. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. Proc. Natl Acad. Sci. USA 93, 14586–14591 (1996).

    CAS  PubMed  Google Scholar 

  14. Grether-Beck, S. et al. Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation. EMBO J. 19, 5793–5800 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Polderman, M. C., Huizinga, T. W., Le Cessie, S. & Pavel, S. UVA-1 cold light treatment of SLE: a double blind, placebo controlled crossover trial. Ann. Rheum. Dis. 60, 112–115 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Noonan, F. P. & De Fabo, E. C. Immunosuppression by ultraviolet B radiation: initiation by urocanic acid. Immunol. Today 13, 250–254 (1992).

    CAS  PubMed  Google Scholar 

  17. Gibbs, N. K. et al. Action spectra for the trans to cis photoisomerisation of urocanic acid in vitro and in mouse skin. Photochem. Photobiol. 57, 584–590 (1993).

    CAS  PubMed  Google Scholar 

  18. Walterscheid, J. P. et al. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc. Natl Acad. Sci. USA 103, 17420–17425 (2006). The first in vivo study to show that increased immunosuppression mediated by UVR exposure is associated with the metabolically stable analogue of platelet-activating factor (PAF) and dependent on the activation of the PAF receptor. This study also explores the possibility that oxidants are involved in the formation of PAF receptor ligands.

    CAS  PubMed  Google Scholar 

  19. Kurimoto, I. & Streilein, J. W. cis-urocanic acid suppression of contact hypersensitivity induction is mediated via tumor necrosis factor-alpha. J. Immunol. 148, 3072–3078 (1992).

    CAS  PubMed  Google Scholar 

  20. De Fabo, E. C. & Noonan, F. P. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J. Exp. Med. 158, 84–98 (1983). The first demonstration that UV-irradiated mice are unable to reject UVR-induced tumours, which are highly antigenic and are thus rejected by normal syngeneic recipients.

    PubMed  Google Scholar 

  21. Cumberbatch, M. & Kimber, I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration. Immunology 75, 257–263 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hart, P. H., Grimbaldeston, M. A., Swift, G. J., Hosszu, E. K. & Finlay-Jones, J. J. A critical role for dermal mast cells in cis-urocanic acid-induced systemic suppression of contact hypersensitivity responses in mice. Photochem. Photobiol. 70, 807–812 (1999). This study shows that the anti-inflammatory cytokine IL-10 produced by mast cells limits the extent of lymphocyte infiltration during contact hypersensitivity.

    CAS  PubMed  Google Scholar 

  23. Wille, J. J., Kydonieus, A. F. & Murphy, G. F. cis-urocanic acid induces mast cell degranulation and release of preformed TNF-alpha: a possible mechanism linking UVB and cis-urocanic acid to immunosuppression of contact hypersensitivity. Skin Pharmacol. Appl. Skin Physiol. 12, 18–27 (1999).

    CAS  PubMed  Google Scholar 

  24. Prasad, R. & Katiyar, S. K. Prostaglandin E2 promotes UV radiation-induced immune suppression through DNA hypermethylation. Neoplasia 15, 795–804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ley, R. D. Photoreactivation of UV-induced pyrimidine dimers and erythema in the marsupial Monodelphis domestica. Proc. Natl Acad. Sci. USA 82, 2409–2411 (1985).

    CAS  PubMed  Google Scholar 

  26. Kripke, M. L., Cox, P. A., Alas, L. G. & Yarosh, D. B. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc. Natl Acad. Sci. USA 89, 7516–7520 (1992).

    CAS  PubMed  Google Scholar 

  27. Yarosh, D. et al. Localization of liposomes containing a DNA repair enzyme in murine skin. J. Invest. Dermatol. 103, 461–468 (1994).

    CAS  PubMed  Google Scholar 

  28. Stege, H. et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc. Natl Acad. Sci. USA 97, 1790–1795 (2000). The first demonstration that the generation of cyclobutane pyrimidine dimers in human skin has immunosuppressive effects.

    CAS  PubMed  Google Scholar 

  29. Takebe, H., Nishigori, C. & Tatsumi, K. Melanoma and other skin cancers in xeroderma pigmentosum patients and mutation in their cells. J. Invest. Dermatol. 92, 236S–238S (1989).

    CAS  PubMed  Google Scholar 

  30. Le May, N., Egly, J. M. & Coin, F. True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J. Nucleic Acids 2010, 616342 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Petit-Frere, C. et al. Induction of interleukin-6 production by ultraviolet radiation in normal human epidermal keratinocytes and in a human keratinocyte cell line is mediated by DNA damage. J. Invest. Dermatol. 111, 354–359 (1998).

    CAS  PubMed  Google Scholar 

  32. Schwarz, A. et al. Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. J. Exp. Med. 201, 173–179 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Berneburg, M. et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J. Biol. Chem. 274, 15345–15349 (1999).

    CAS  PubMed  Google Scholar 

  34. Chen, A. C. et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 373, 1618–1626 (2015).

    CAS  PubMed  Google Scholar 

  35. Marathe, G. K. et al. Ultraviolet B radiation generates platelet-activating factor-like phospholipids underlying cutaneous damage. J. Biol. Chem. 280, 35448–35457 (2005).

    CAS  PubMed  Google Scholar 

  36. Konger, R. L., Marathe, G. K., Yao, Y., Zhang, Q. & Travers, J. B. Oxidized glycerophosphocholines as biologically active mediators for ultraviolet radiation-mediated effects. Prostaglandins Other Lipid Mediat. 87, 1–8 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alappatt, C., Johnson, C. A., Clay, K. L. & Travers, J. B. Acute keratinocyte damage stimulates platelet-activating factor production. Arch. Dermatol. Res. 292, 256–259 (2000).

    CAS  PubMed  Google Scholar 

  38. Yao, Y. et al. Ultraviolet B radiation generated platelet-activating factor receptor agonist formation involves EGF-R-mediated reactive oxygen species. J. Immunol. 182, 2842–2848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Calignano, A., Cirino, G., Meli, R. & Persico, P. Isolation and identification of platelet-activating factor in UV-irradiated guinea pig skin. J. Pharmacol. Methods 19, 89–91 (1988).

    CAS  PubMed  Google Scholar 

  40. Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    CAS  PubMed  Google Scholar 

  41. Walterscheid, J. P., Ullrich, S. E. & Nghiem, D. X. Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J. Exp. Med. 195, 171–179 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Travers, J. B. et al. Identification of functional platelet-activating factor receptors on human keratinocytes. J. Invest. Dermatol. 105, 816–823 (1995).

    CAS  PubMed  Google Scholar 

  43. Pei, Y. et al. Activation of the epidermal platelet-activating factor receptor results in cytokine and cyclooxygenase-2 biosynthesis. J. Immunol. 161, 1954–1961 (1998).

    CAS  PubMed  Google Scholar 

  44. Chacon-Salinas, R. et al. An essential role for platelet-activating factor in activating mast cell migration following ultraviolet irradiation. J. Leukoc. Biol. 95, 139–148 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Esser, C. & Rannug, A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 67, 259–279 (2015).

    CAS  PubMed  Google Scholar 

  46. Funatake, C. J., Marshall, N. B., Steppan, L. B., Mourich, D. V. & Kerkvliet, N. I. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+CD25+ cells with characteristics of regulatory T cells. J. Immunol. 175, 4184–4188 (2005).

    CAS  PubMed  Google Scholar 

  47. Quintana, F. J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 107, 20768–20773 (2010).

    CAS  PubMed  Google Scholar 

  48. Hauben, E. et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 112, 1214–1222 (2008).

    CAS  PubMed  Google Scholar 

  49. Stockinger, B., Di Meglio, P., Gialitakis, M. & Duarte, J. H. The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 (2014).

    CAS  PubMed  Google Scholar 

  50. Di Meglio, P. et al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40, 989–1001 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Kadow, S. et al. Aryl hydrocarbon receptor is critical for homeostasis of invariant γδ T cells in the murine epidermis. J. Immunol. 187, 3104–3110 (2011).

    CAS  PubMed  Google Scholar 

  52. Luecke, S. et al. The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res. 23, 828–833 (2010).

    CAS  PubMed  Google Scholar 

  53. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  54. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    CAS  PubMed  Google Scholar 

  55. Kawajiri, K. et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in Apc Min/+ mice with natural ligands. Proc. Natl Acad. Sci. USA 106, 13481–13486 (2009).

    CAS  PubMed  Google Scholar 

  56. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fritsche, E. et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc. Natl Acad. Sci. USA 104, 8851–8856 (2007). The first demonstration that UVBR activates the aryl hydrocarbon receptor in keratinocytes through the generation of trytophan photoproducts and thereby elicits a gene response including expression of COX2.

    CAS  PubMed  Google Scholar 

  58. Wei, Y. D., Rannug, U. & Rannug, A. UV-induced CYP1A1 gene expression in human cells is mediated by tryptophan. Chem. Biol. Interact. 118, 127–140 (1999).

    CAS  PubMed  Google Scholar 

  59. Rannug, A. et al. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J. Biol. Chem. 262, 15422–15427 (1987).

    CAS  PubMed  Google Scholar 

  60. Schallreuter, K. U. et al. Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 2: epidermal H2O2/ONOO--mediated stress in vitiligo hampers indoleamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immune response signaling. FASEB J. 26, 2471–2485 (2012).

    CAS  PubMed  Google Scholar 

  61. Wincent, E. et al. The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P4501 substrate 6-formylindolo[3,2-b]carbazole is present in humans. J. Biol. Chem. 284, 2690–2696 (2009).

    CAS  PubMed  Google Scholar 

  62. Tigges, J. et al. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5,6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J. Invest. Dermatol. 134, 556–559 (2014).

    CAS  PubMed  Google Scholar 

  63. Navid, F. et al. The aryl hydrocarbon receptor is involved in UVR-induced immunosuppression. J. Invest. Dermatol. 133, 2763–2770 (2013).

    CAS  PubMed  Google Scholar 

  64. Bruhs, A. et al. Activation of the arylhydrocarbon receptor causes immunosuppression primarily by modulating dendritic cells. J. Invest. Dermatol. 135, 435–444 (2015).

    CAS  PubMed  Google Scholar 

  65. Rekik, R. et al. Impaired TGF-beta signaling in patients with active systemic lupus erythematosus is associated with an overexpression of IL-22. Cytokine 108, 182–189 (2018).

    CAS  PubMed  Google Scholar 

  66. Tanaka, Y., Uchi, H., Hashimoto-Hachiya, A. & Furue, M. Tryptophan photoproduct FICZ upregulates IL1A, IL1B, and IL6 expression via oxidative stress in keratinocytes. Oxid. Med. Cell. Longev. 2018, 9298052 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Pollet, M. et al. The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ. 25, 1823–1836 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Holick, M. F. Vitamin D: a millenium perspective. J. Cell. Biochem. 88, 296–307 (2003).

    CAS  PubMed  Google Scholar 

  69. Penna, G. et al. 1,25-dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J. Immunol. 178, 145–153 (2007).

    CAS  PubMed  Google Scholar 

  70. van der Aar, A. M. et al. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells. J. Allergy Clin. Immunol. 127, 1532–1540 (2011).

    PubMed  Google Scholar 

  71. Baeke, F., Takiishi, T., Korf, H., Gysemans, C. & Mathieu, C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol. 10, 482–496 (2010).

    CAS  PubMed  Google Scholar 

  72. Schwarz, A., Navid, F., Sparwasser, T., Clausen, B. E. & Schwarz, T. 1,25-dihydroxyvitamin D exerts similar immunosuppressive effects as UVR but is dispensable for local UVR-induced immunosuppression. J. Invest. Dermatol. 132, 2762–2769 (2012).

    CAS  PubMed  Google Scholar 

  73. Matos, T. R. & Sheth, V. The symbiosis of phototherapy and photoimmunology. Clin. Dermatol. 34, 538–547 (2016).

    PubMed  Google Scholar 

  74. Wang, T. T. et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173, 2909–2912 (2004).

    CAS  PubMed  Google Scholar 

  75. Martin, E., Ganz, T. & Lehrer, R. I. Defensins and other endogenous peptide antibiotics of vertebrates. J. Leukoc. Biol. 58, 128–136 (1995).

    CAS  PubMed  Google Scholar 

  76. Gallo, R. L. et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl Acad. Sci. USA 91, 11035–11039 (1994).

    CAS  PubMed  Google Scholar 

  77. Glaser, R. et al. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 123, 1117–1123 (2009).

    PubMed  Google Scholar 

  78. Bernard, J. J. & Gallo, R. L. Cyclooxygenase-2 enhances antimicrobial peptide expression and killing of Staphylococcus aureus. J. Immunol. 185, 6535–6544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, W., Tang, Q., Gonzales, M. S. & Bowden, G. T. Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 20, 3921–3926 (2001).

    CAS  PubMed  Google Scholar 

  80. Han, J. A. et al. p53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J. 21, 5635–5644 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong, S. P. et al. Biopositive effects of low-dose UVB on epidermis: coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement. J. Invest. Dermatol. 128, 2880–2887 (2008).

    CAS  PubMed  Google Scholar 

  82. Mallbris, L., Edstrom, D. W., Sundblad, L., Granath, F. & Stahle, M. UVB upregulates the antimicrobial protein hCAP18 mRNA in human skin. J. Invest. Dermatol. 125, 1072–1074 (2005).

    CAS  PubMed  Google Scholar 

  83. Heilborn, J. D., Weber, G., Gronberg, A., Dieterich, C. & Stahle, M. Topical treatment with the vitamin D analogue calcipotriol enhances the upregulation of the antimicrobial protein hCAP18/LL-37 during wounding in human skin in vivo. Exp. Dermatol. 19, 332–338 (2010).

    CAS  PubMed  Google Scholar 

  84. Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    CAS  PubMed  Google Scholar 

  85. Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012). This study shows that TLR3 in keratinocytes recognizes self-RNAs derived from UVR-damaged cells to elicit a sunburn response.

    CAS  PubMed  Google Scholar 

  86. Gallo, R. L. & Bernard, J. J. Innate immune sensors stimulate inflammatory and immunosuppressive responses to UVB radiation. J. Invest. Dermatol. 134, 1508–1511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, L. J. et al. Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 45, 119–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schwarz, T. & Luger, T. A. Effect of UV irradiation on epidermal cell cytokine production. J. Photochem. Photobiol. B. Biol. 4, 1–13 (1989).

    CAS  Google Scholar 

  89. Dombrowski, Y. et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl Med. 3, 82ra38 (2011).

    PubMed  PubMed Central  Google Scholar 

  90. Sorensen, O. E. et al. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170, 5583–5589 (2003).

    CAS  PubMed  Google Scholar 

  91. Takahashi, T. et al. Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci. Rep. 8, 4032 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Ahmad, I. et al. Toll-like receptor-4 deficiency enhances repair of UVR-induced cutaneous DNA damage by nucleotide excision repair mechanism. J. Invest. Dermatol. 134, 1710–1717 (2014).

    CAS  PubMed  Google Scholar 

  93. Lewis, W. et al. Regulation of ultraviolet radiation induced cutaneous photoimmunosuppression by toll-like receptor-4. Arch. Biochem. Biophys. 508, 171–177 (2011). This study shows that TLR4 is required for UVR-induced immune suppression by showing that Tlr4 −/− mice, when compared with Tlr4 +/+ mice, are resistant to UVBR-induced immunosuppression.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoshikawa, T. & Streilein, J. W. Genetic basis of the effects of ultraviolet light B on cutaneous immunity. Evidence that polymorphism at the Tnfa and Lps loci governs susceptibility. Immunogenetics 32, 398–405 (1990).

    CAS  PubMed  Google Scholar 

  95. Miller, Y. I. & Shyy, J. Y. Context-dependent role of oxidized lipids and lipoproteins in inflammation. Trends Endocrinol. Metab. 28, 143–152 (2017).

    CAS  PubMed  Google Scholar 

  96. Trautinger, F., Kindas-Mugge, I., Knobler, R. M. & Honigsmann, H. Stress proteins in the cellular response to ultraviolet radiation. J. Photochem. Photobiol. B. Biol. 35, 141–148 (1996).

    CAS  Google Scholar 

  97. Klune, J. R., Dhupar, R., Cardinal, J., Billiar, T. R. & Tsung, A. HMGB1: endogenous danger signaling. Mol. Med. 14, 476–484 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gariboldi, S. et al. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of β-defensin 2 via TLR2 and TLR4. J. Immunol. 181, 2103–2110 (2008).

    CAS  PubMed  Google Scholar 

  99. Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. 4, 1431 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    CAS  PubMed  Google Scholar 

  101. Chamilos, G. et al. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120, 3699–3707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schwarz, T. & Beissert, S. Milestones in photoimmunology. J. Invest. Dermatol. 133, E7–E10 (2013).

    PubMed  Google Scholar 

  103. Damiani, E. & Ullrich, S. E. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer. Prog. Lipid Res. 63, 14–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vieyra-Garcia, P. A. & Wolf, P. From early immunomodulatory triggers to immunosuppressive outcome: therapeutic implications of the complex interplay between the wavebands of sunlight and the skin. Front. Med. 5, 232 (2018).

    Google Scholar 

  105. Hart, P. H., Norval, M., Byrne, S. N. & Rhodes, L. E. Exposure to ultraviolet radiation in the modulation of human diseases. Annu. Rev. Pathol. 14, 55–81 (2019).

    CAS  PubMed  Google Scholar 

  106. Elmets, C. A., Cala, C. M. & Xu, H. Photoimmunology. Dermatol. Clin. 32, 277–290 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kripke, M. L. Antigenicity of murine skin tumors induced by ultraviolet light. J. Natl Cancer Inst. 53, 1333–1336 (1974).

    CAS  PubMed  Google Scholar 

  108. Fisher, M. S. & Kripke, M. L. Suppressor T lymphocytes control the development of primary skin cancers in ultraviolet-irradiated mice. Science 216, 1133–1134 (1982).

    CAS  PubMed  Google Scholar 

  109. Schwarz, T. 25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells. Photochem. Photobiol. 84, 10–18 (2008).

    CAS  PubMed  Google Scholar 

  110. Streilein, J. W., Toews, G. T., Gilliam, J. N. & Bergstresser, P. R. Tolerance or hypersensitivity to 2,4-dinitro-1-fluorobenzene: the role of Langerhans cell density within epidermis. J. Invest. Dermatol. 74, 319–322 (1980).

    CAS  PubMed  Google Scholar 

  111. Elmets, C. A., Bergstresser, P. R., Tigelaar, R. E., Wood, P. J. & Streilein, J. W. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. J. Exp. Med. 158, 781–794 (1983).

    CAS  PubMed  Google Scholar 

  112. Loser, K. et al. Epidermal RANKL controls regulatory T cell numbers via activation of dendritic cells. Nat. Med. 12, 1372–1379 (2006).

    CAS  PubMed  Google Scholar 

  113. Yamazaki, S. et al. CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181, 6923–6933 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Soontrapa, K. et al. Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc. Natl Acad. Sci. USA 108, 6668–6673 (2011).

    CAS  PubMed  Google Scholar 

  115. Reeve, V. E., Matheson, M. J., Bosnic, M. & Boehm-Wilcox, C. The protective effect of indomethacin on photocarcinogenesis in hairless mice. Cancer Lett. 95, 213–219 (1995).

    CAS  PubMed  Google Scholar 

  116. Hart, P. H. et al. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J. Exp. Med. 187, 2045–2053 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Byrne, S. N., Beaugie, C., O’Sullivan, C., Leighton, S. & Halliday, G. M. The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. Am. J. Pathol. 179, 211–222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Alard, P., Kurimoto, I., Niizeki, H., Doherty, J. M. & Streilein, J. W. Hapten-specific tolerance induced by acute, low-dose ultraviolet B radiation of skin requires mast cell degranulation. Eur. J. Immunol. 31, 1736–1746 (2001).

    CAS  PubMed  Google Scholar 

  119. Galli, S. J., Grimbaldeston, M. & Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478–486 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Matheson, M. J. & Reeve, V. E. The effect of the antihistamine cimetidine on ultraviolet-radiation-induced tumorigenesis in the hairless mouse. Photochem. Photobiol. 53, 639–642 (1991).

    CAS  PubMed  Google Scholar 

  121. Griswold, D. E., Alessi, S., Badger, A. M., Poste, G. & Hanna, N. Inhibition of T suppressor cell expression by histamine type 2 (H2) receptor antagonists. J. Immunol. 132, 3054–3057 (1984).

    CAS  PubMed  Google Scholar 

  122. Jaksic, A. et al. Cis-urocanic acid synergizes with histamine for increased PGE2 production by human keratinocytes: link to indomethacin-inhibitable UVB-induced immunosuppression. Photochem. Photobiol. 61, 303–309 (1995).

    CAS  PubMed  Google Scholar 

  123. Laberge, S., Cruikshank, W. W., Kornfeld, H. & Center, D. M. Histamine-induced secretion of lymphocyte chemoattractant factor from CD8+ T cells is independent of transcription and translation. Evidence for constitutive protein synthesis and storage. J. Immunol. 155, 2902–2910 (1995).

    CAS  PubMed  Google Scholar 

  124. Lagier, B., Lebel, B., Bousquet, J. & Pene, J. Different modulation by histamine of IL-4 and interferon-gamma (IFN-γ) release according to the phenotype of human Th0, Th1 and Th2 clones. Clin. Exp. Immunol. 108, 545–551 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Elenkov, I. J. et al. Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J. Immunol. 161, 2586–2593 (1998).

    CAS  PubMed  Google Scholar 

  126. Grimbaldeston, M. A., Nakae, S., Kalesnikoff, J., Tsai, M. & Galli, S. J. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat. Immunol. 8, 1095–1104 (2007).

    CAS  PubMed  Google Scholar 

  127. Rana, S., Byrne, S. N., MacDonald, L. J., Chan, C. Y. & Halliday, G. M. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am. J. Pathol. 172, 993–1004 (2008).

    PubMed  PubMed Central  Google Scholar 

  128. Shreedhar, V. K., Pride, M. W., Sun, Y., Kripke, M. L. & Strickland, F. M. Origin and characteristics of ultraviolet-B radiation-induced suppressor T lymphocytes. J. Immunol. 161, 1327–1335 (1998).

    CAS  PubMed  Google Scholar 

  129. Moodycliffe, A. M., Nghiem, D., Clydesdale, G. & Ullrich, S. E. Immune suppression and skin cancer development: regulation by NKT cells. Nat. Immunol. 1, 521–525 (2000).

    CAS  PubMed  Google Scholar 

  130. Fukunaga, A. et al. Langerhans cells serve as immunoregulatory cells by activating NKT cells. J. Immunol. 185, 4633–4640 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Byrne, S. N. & Halliday, G. M. B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J. Invest. Dermatol. 124, 570–578 (2005).

    CAS  PubMed  Google Scholar 

  132. Matsumura, Y., Byrne, S. N., Nghiem, D. X., Miyahara, Y. & Ullrich, S. E. A role for inflammatory mediators in the induction of immunoregulatory B cells. J. Immunol. 177, 4810–4817 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    CAS  PubMed  Google Scholar 

  134. Chacon-Salinas, R., Limon-Flores, A. Y., Chavez-Blanco, A. D., Gonzalez-Estrada, A. & Ullrich, S. E. Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J. Immunol. 186, 25–31 (2011).

    CAS  PubMed  Google Scholar 

  135. Hawk, J. L., Murphy, G. M. & Holden, C. A. The presence of neutrophils in human cutaneous ultraviolet-B inflammation. Br. J. Dermatol. 118, 27–30 (1988).

    CAS  PubMed  Google Scholar 

  136. Teunissen, M. B. et al. Ultraviolet B radiation induces a transient appearance of IL-4+ neutrophils, which support the development of Th2 responses. J. Immunol. 168, 3732–3739 (2002).

    CAS  PubMed  Google Scholar 

  137. Piskin, G., Bos, J. D. & Teunissen, M. B. Neutrophils infiltrating ultraviolet B-irradiated normal human skin display high IL-10 expression. Arch. Dermatol. Res. 296, 339–342 (2005).

    CAS  PubMed  Google Scholar 

  138. Love, L. A. et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 60, 2499–2504 (2009).

    PubMed  PubMed Central  Google Scholar 

  139. Artukovic, M., Ikic, M., Kustelega, J., Artukovic, I. N. & Kaliterna, D. M. Influence of UV radiation on immunological system and occurrence of autoimmune diseases. Coll. Antropol. 34 (Suppl. 2), 175–178 (2010).

    PubMed  Google Scholar 

  140. Barbhaiya, M. & Costenbader, K. H. Ultraviolet radiation and systemic lupus erythematosus. Lupus 23, 588–595 (2014).

    CAS  PubMed  Google Scholar 

  141. Baer, R. L. & Harber, L. C. Photobiology of lupus erythematosus. Arch. Dermatol. 92, 124–128 (1965).

    PubMed  Google Scholar 

  142. Kemp, M. G., Lindsey-Boltz, L. A. & Sancar, A. UV light potentiates STING (stimulator of interferon genes)-dependent innate immune signaling through deregulation of ULK1 (Unc51-like kinase 1). J. Biol. Chem. 290, 12184–12194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Google Scholar 

  144. O’Neill, L. A. Sensing the dark side of DNA. Science 339, 763–764 (2013).

    PubMed  Google Scholar 

  145. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Birner, P. et al. Interleukin-6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus erythematosus. Exp. Dermatol. 25, 305–310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. McGrath, H. Jr. Ultraviolet-A1 irradiation therapy for systemic lupus erythematosus. Lupus 26, 1239–1251 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Szegedi, A. et al. Ultraviolet-A1 phototherapy modulates Th1/Th2 and Tc1/Tc2 balance in patients with systemic lupus erythematosus. Rheumatology 44, 925–931 (2005).

    CAS  PubMed  Google Scholar 

  149. Wolf, P., Weger, W., Patra, V., Gruber-Wackernagel, A. & Byrne, S. N. Desired response to phototherapy versus photoaggravation in psoriasis: what makes the difference? Exp. Dermatol. 25, 937–944 (2016).

    CAS  PubMed  Google Scholar 

  150. Enk, C. D., Sredni, D., Blauvelt, A. & Katz, S. I. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. J. Immunol. 154, 4851–4856 (1995).

    CAS  PubMed  Google Scholar 

  151. Johnson-Huang, L. M. et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J. Invest. Dermatol. 130, 2654–2663 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Furuhashi, T. et al. Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLOS ONE 8, e54895 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. DeSilva, B., McKenzie, R. C., Hunter, J. A. & Norval, M. Local effects of TL01 phototherapy in psoriasis. Photodermatol. Photoimmunol. Photomed. 24, 268–269 (2008).

    PubMed  Google Scholar 

  154. McLoone, P., Woods, G. M. & Norval, M. Decrease in Langerhans cells and increase in lymph node dendritic cells following chronic exposure of mice to suberythemal doses of solar simulated radiation. Photochem. Photobiol. 81, 1168–1173 (2005).

    CAS  PubMed  Google Scholar 

  155. Racz, E. et al. Narrowband ultraviolet B inhibits innate cytosolic double-stranded RNA receptors in psoriatic skin and keratinocytes. Br. J. Dermatol. 164, 838–847 (2011).

    CAS  PubMed  Google Scholar 

  156. Walder, B. K., Robertson, M. R. & Jeremy, D. Skin cancer and immunosuppression. Lancet 2, 1282–1283 (1971).

    CAS  PubMed  Google Scholar 

  157. Hardie, I. R., Strong, R. W., Hartley, L. C., Woodruff, P. W. & Clunie, G. J. Skin cancer in Caucasian renal allograft recipients living in a subtropical climate. Surgery 87, 177–183 (1980).

    CAS  PubMed  Google Scholar 

  158. Field, S. & Newton-Bishop, J. A. Melanoma and vitamin D. Mol. Oncol. 5, 197–214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gandini, S. et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 41, 45–60 (2005).

    PubMed  Google Scholar 

  160. Deeb, K. K., Trump, D. L. & Johnson, C. S. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer 7, 684–700 (2007).

    CAS  PubMed  Google Scholar 

  161. Stein, B. et al. Ultraviolet-radiation induced c-Jun gene transcription: two AP-1 like binding sites mediate the response. Photochem. Photobiol. 55, 409–415 (1992).

    CAS  PubMed  Google Scholar 

  162. Loiacono, C. M., Taus, N. S. & Mitchell, W. J. The herpes simplex virus type 1 ICP0 promoter is activated by viral reactivation stimuli in trigeminal ganglia neurons of transgenic mice. J. Neurovirol. 9, 336–345 (2003).

    CAS  PubMed  Google Scholar 

  163. Zak-Prelich, M., Borkowski, J. L., Alexander, F. & Norval, M. The role of solar ultraviolet irradiation in zoster. Epidemiol. Infect. 129, 593–597 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Korostil, I. A. & Regan, D. G. Varicella-zoster virus in Perth, Western Australia: seasonality and reactivation. PLOS ONE 11, e0151319 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Cahoon, E. K., Engels, E. A., Freedman, D. M., Norval, M. & Pfeiffer, R. M. Ultraviolet radiation and Kaposi sarcoma incidence in a nationwide US cohort of HIV-infected men. J. Natl Cancer Inst. 109, djw267 (2017).

    Google Scholar 

  166. Pacini, L. et al. UV radiation activates Toll-like receptor 9 expression in primary human keratinocytes, an event inhibited by human papillomavirus 38 E6 and E7 oncoproteins. J. Virol. 91, e01123–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, W. et al. Identifying the target cells and mechanisms of Merkel cell polyomavirus infection. Cell Host Microbe 19, 775–787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chen, Q. et al. Prevention of ultraviolet radiation-induced immunosuppression by sunscreen in Candida albicans-induced delayed-type hypersensitivity. Mol. Med. Rep. 14, 202–208 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Brown, E. L., Ullrich, S. E., Pride, M. & Kripke, M. L. The effect of UV irradiation on infection of mice with Borrelia burgdorferi. Photochem. Photobiol. 73, 537–544 (2001).

    CAS  PubMed  Google Scholar 

  170. Garssen, J. et al. A rat cytomegalovirus infection model as a tool for immunotoxicity testing. Eur. J. Pharmacol. 292, 223–231 (1995).

    CAS  PubMed  Google Scholar 

  171. Ryan, L. K. et al. Exposure to ultraviolet radiation enhances mortality and pathology associated with influenza virus infection in mice. Photochem. Photobiol. 72, 497–507 (2000).

    CAS  PubMed  Google Scholar 

  172. Boere, T. M., Visser, D. H., van Furth, A. M., Lips, P. & Cobelens, F. G. J. Solar ultraviolet B exposure and global variation in tuberculosis incidence: an ecological analysis. Eur. Respir. J. 49, 1601979 (2017).

    PubMed  Google Scholar 

  173. Norval, M. & Halliday, G. M. The consequences of UV-induced immunosuppression for human health. Photochem. Photobiol. 87, 965–977 (2011).

    CAS  PubMed  Google Scholar 

  174. John, T. J. & Christopher, S. Oral polio vaccination of children in the tropics. III. Intercurrent enterovirus infections, vaccine virus take and antibody response. Am. J. Epidemiol. 102, 422–428 (1975).

    CAS  PubMed  Google Scholar 

  175. Swartz, T. A., Skalska, P., Gerichter, C. G. & Cockburn, W. C. Routine administration of oral polio vaccine in a subtropical area. Factors possibly influencing sero-conversion rates. J. Hyg. 70, 719–726 (1972).

    CAS  PubMed  Google Scholar 

  176. Zykov, M. P. & Sosunov, A. V. Vaccination activity of live influenza vaccine in different seasons of the year. J. Hyg. Epidemiol. Microbiol. Immunol. 31, 453–459 (1987).

    CAS  PubMed  Google Scholar 

  177. Linder, N. et al. Effect of season of inoculation on immune response to rubella vaccine in children. J. Trop. Pediatr. 57, 299–302 (2011).

    PubMed  Google Scholar 

  178. Sleijffers, A. et al. Influence of ultraviolet B exposure on immune responses following hepatitis B vaccination in human volunteers. J. Invest. Dermatol. 117, 1144–1150 (2001).

    CAS  PubMed  Google Scholar 

  179. Sleijffers, A. et al. Cytokine polymorphisms play a role in susceptibility to ultraviolet B-induced modulation of immune responses after hepatitis B vaccination. J. Immunol. 170, 3423–3428 (2003).

    CAS  PubMed  Google Scholar 

  180. Sleijffers, A. et al. Epidermal cis-urocanic acid levels correlate with lower specific cellular immune responses after hepatitis B vaccination of ultraviolet B-exposed humans. Photochem. Photobiol. 77, 271–275 (2003).

    CAS  PubMed  Google Scholar 

  181. Cela, E. M. et al. Time-course study of different innate immune mediators produced by UV-irradiated skin: comparative effects of short and daily versus a single harmful UV exposure. Immunology 145, 82–93 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Khaskhely, N. M. et al. Low-dose UVB contributes to host resistance against Leishmania amazonensis infection in mice through induction of gamma interferon and tumor necrosis factor alpha cytokines. Clin. Diagn. Lab. Immunol. 9, 677–686 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Krutmann, J., Morita, A. & Chung, J. H. Sun exposure: what molecular photodermatology tells us about its good and bad sides. J. Invest. Dermatol. 132, 976–984 (2012).

    CAS  PubMed  Google Scholar 

  184. Danno, K. & Sugie, N. Effects of near-infrared radiation on the epidermal proliferation and cutaneous immune function in mice. Photodermatol. Photoimmunol. Photomed. 12, 233–236 (1996).

    CAS  PubMed  Google Scholar 

  185. Reeve, V. E., Allanson, M., Cho, J. L., Arun, S. J. & Domanski, D. Interdependence between heme oxygenase-1 induction and estrogen-receptor-beta signaling mediates photoimmune protection by UVA radiation in mice. J. Invest. Dermatol. 129, 2702–2710 (2009).

    CAS  PubMed  Google Scholar 

  186. Salmon, J. K., Armstrong, C. A. & Ansel, J. C. The skin as an immune organ. West. J. Med. 160, 146–152 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Damian, D. L. et al. UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J. Invest. Dermatol. 128, 447–454 (2008).

    CAS  PubMed  Google Scholar 

  188. Reeve, V. E., Allanson, M., Domanski, D. & Painter, N. Gender differences in UV-induced inflammation and immunosuppression in mice reveal male unresponsiveness to UVA radiation. Photochem. Photobiol. Sci. 11, 173–179 (2012).

    CAS  PubMed  Google Scholar 

  189. Thomas-Ahner, J. M. et al. Gender differences in UVB-induced skin carcinogenesis, inflammation, and DNA damage. Cancer Res. 67, 3468–3474 (2007).

    CAS  PubMed  Google Scholar 

  190. Ansar Ahmed, S., Penhale, W. J. & Talal, N. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. Am. J. Pathol. 121, 531–551 (1985).

    CAS  PubMed  Google Scholar 

  191. Noonan, F. P. & Hoffman, H. A. Susceptibility to immunosuppression by ultraviolet B radiation in the mouse. Immunogenetics 39, 29–39 (1994).

    CAS  PubMed  Google Scholar 

  192. Yoshikawa, T. et al. Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J. Invest. Dermatol. 95, 530–536 (1990). The first study to show that failure to induce contact hypersensitivity at UVR-exposed sites is associated with a higher risk of skin cancer in humans.

    CAS  PubMed  Google Scholar 

  193. Alamartine, E., Berthoux, P., Mariat, C., Cambazard, F. & Berthoux, F. Interleukin-10 promoter polymorphisms and susceptibility to skin squamous cell carcinoma after renal transplantation. J. Invest. Dermatol. 120, 99–103 (2003).

    PubMed  Google Scholar 

  194. Nagano, T., Kunisada, M., Yu, X., Masaki, T. & Nishigori, C. Involvement of interleukin-10 promoter polymorphisms in nonmelanoma skin cancers-a case study in non-Caucasian skin cancer patients. Photochem. Photobiol. 84, 63–66 (2008).

    CAS  PubMed  Google Scholar 

  195. Chahal, H. S. et al. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat. Commun. 7, 12048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Sharma, M. R., Werth, B. & Werth, V. P. Animal models of acute photodamage: comparisons of anatomic, cellular and molecular responses in C57BL/6J, SKH1 and Balb/c mice. Photochem. Photobiol. 87, 690–698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Gombart, A. F., Borregaard, N. & Koeffler, H. P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 19, 1067–1077 (2005).

    CAS  PubMed  Google Scholar 

  198. Berthier-Vergnes, O. et al. TNF-α enhances phenotypic and functional maturation of human epidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production. FEBS Lett. 579, 3660–3668 (2005).

    CAS  PubMed  Google Scholar 

  199. Grewe, M., Gyufko, K. & Krutmann, J. Interleukin-10 production by cultured human keratinocytes: regulation by ultraviolet B and ultraviolet A1 radiation. J. Invest. Dermatol. 104, 3–6 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research support by grants from Michigan State University Gran Fondo funds, NIH R00 CA177868, the German Federal Ministry for Education and Research (BMBF: 02NUK036C/KAUVIR), NIH R01AI052453 and NIH R01AR069653. The authors thank W. Shoemaker (Michigan State University), T. Haarmann-Stemmann (IUF) and C. Esser (IUF) for their help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching content for the manuscript, writing the manuscript and editing before submission.

Corresponding author

Correspondence to Jamie J. Bernard.

Ethics declarations

Competing interests

R.L.G. is a consultant for and has equity interest in MatriSys BioScience and Sente Inc. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information

Nature Reviews Immunology thanks P. Hart, T. Schwarz and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Glossary

Contact hypersensitivity

(CHS). A T cell-mediated and antigen-specific inflammatory response in which the exposure of epidermal cells to exogenous haptens results in a delayed-type hypersensitivity reaction that can be experimentally measured and quantified.

Chromophores

The parts of a photoreceptor that absorb photons of light, using a mechanism that involves a change in configuration.

Melanogenesis

The production of melanin pigments by melanocytes in the basal layer of the epidermis.

Porphyrins

A group of heterocyclic macrocycle organic compounds composed of four modified pyrrole subunits interconnected at their α-carbon atoms by methine bridges.

Singlet oxygen

The reactive oxygen species 1O2.

Urocanic acid

(UCA). A breakdown (deamination) product of histidine that is an important epidermal chromophore for ultraviolet radiation.

Nucleotide excision repair

(NER). A mechanism to remove DNA damage, such as the thymine dimers and 6,4-photoproducts that are induced by ultraviolet radiation.

Xeroderma pigmentosum

An autosomal recessive genetic disorder that causes cellular hypersensitivity to ultraviolet radiation as a result of a defect in the DNA repair system.

Reactive oxygen intermediates

(ROIs). Successive one-electron reduction products of O2, including superoxide anions, hydrogen peroxide and hydroxyl radicals; ROIs are chemically reactive with unpaired electrons.

Minimal erythemal dose

The threshold dose of ultraviolet radiation that can produce sunburn.

Dermatomyositis

An uncommon inflammatory myopathy characterized by degenerative changes to the muscles and skin.

Dinitrochlorobenzene

1-Chloro-2,4-dinitrobenzene is an organic, potent contact allergen.

Psoralen plus UVA

A therapy for skin conditions, including psoriasis, eczema and vitiligo, that is composed of a plant-derived ultraviolet (UV)-sensitizer compound (psoralen), combined with UVA radiation (long wavelength radiation).

Impetigo

A common and highly contagious skin infection that mainly affects infants and children; it usually occurs as red sores on the face.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, J.J., Gallo, R.L. & Krutmann, J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol 19, 688–701 (2019). https://doi.org/10.1038/s41577-019-0185-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0185-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing