Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T-cell-targeted therapies in rheumatoid arthritis

Abstract

T cells regulate the disease process in rheumatoid arthritis (RA) on multiple levels and represent a logical choice for anti-inflammatory therapy. In the inflamed joint they promote neoangiogenesis and lymphoid organogenesis, and stimulate synoviocyte proliferation and development of bone-eroding osteoclasts. The design of T-cell-targeted therapies for RA needs to take into account the uniqueness of T-cell generation, turnover and differentiation in affected patients. Patients accumulate 'old' T cells that respond to alternate regulatory signals because of an accelerated immune aging process; any therapeutic interventions that increase the replicative stress of T cells should, therefore, be avoided. Instead, therapeutic approaches that raise the threshold for T-cell activation are more promising. As a rule, antigen-derived signals synergize with co-stimulatory signals to stimulate T cells; such co-stimulatory signals are now targeted in novel immunosuppressive therapies. An example is abatacept (soluble cytotoxic-T-lymphocyte-associated protein 4–immunoglobulin), which binds with high affinity to CD80/CD86 and effectively suppresses inflammatory activity in RA. The therapeutic benefits gained by disrupting T-cell co-stimulation indicate that the pathogenesis of RA is driven by a more generalized abnormality in T-cell activation thresholds rather than a highly selective action of arthritogenic antigens.

Key Points

  • T cells are key players in rheumatoid arthritis and, by virtue of their regulatory and effector functions, contribute to several disease pathways

  • T-cell activation requires integration of multiple signals, one of them deriving from antigen recognition and others from co-stimulatory receptors

  • Interfering with co-stimulatory signals can inhibit T-cell activation without the need to identify disease-relevant antigens

  • T-cell activation in rheumatoid arthritis occurs in the synovium as well as lymphoid organs, involving distinct co-stimulatory receptor–ligand pairs in each microenvironment

  • Patients with rheumatoid arthritis accumulate prematurely aged T cells that express novel regulatory receptors and respond to specific environmental cues

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cells in rheumatoid arthritis.
Figure 2: Immunosuppressive mechanisms mediated by soluble cytotoxic T-lymphocyte-associated protein 4 immunoglobulin.
Figure 3: Central and peripheral T-cell co-stimulation.

Similar content being viewed by others

References

  1. Keen HI and Emery P (2005) How should we manage early rheumatoid arthritis? From imaging to intervention. Curr Opin Rheumatol 17: 280–285

    Article  Google Scholar 

  2. Goronzy JJ and Weyand CM (2005) Rheumatoid arthritis. Immunol Rev 204: 55–73

    Article  CAS  Google Scholar 

  3. Lipsky PE (2005) Integrating biologic therapy into the comprehensive care of patients with rheumatoid arthritis. J Rheumatol Suppl 72: 54–57

    PubMed  Google Scholar 

  4. Pollard L and Choy E (2005) Rheumatoid arthritis: non-tumor necrosis factor targets. Curr Opin Rheumatol 17: 242–246

    Article  CAS  Google Scholar 

  5. Lanzavecchia A and Sallusto F (2005) Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 17: 326–332

    Article  CAS  Google Scholar 

  6. Naylor K et al. (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174: 7446–7452

    Article  CAS  Google Scholar 

  7. Palacios EH and Weiss A (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23: 7990–8000

    Article  CAS  Google Scholar 

  8. Hermiston ML et al. (2002) Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest 109: 9–14

    Article  CAS  Google Scholar 

  9. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5: 472–484

    Article  CAS  Google Scholar 

  10. O'Garra A and Robinson D (2004) Development and function of T helper 1 cells. Adv Immunol 83: 133–162

    Article  CAS  Google Scholar 

  11. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23: 23–68

    Article  CAS  Google Scholar 

  12. Udagawa N (2003) The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. J Bone Miner Metab 21: 337–343

    Article  CAS  Google Scholar 

  13. Acuto O and Michel F (2003) CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3: 939–951

    Article  CAS  Google Scholar 

  14. Snyder MR et al. (2004) The double life of NK receptors: stimulation or co-stimulation? Trends Immunol 25: 25–32

    Article  CAS  Google Scholar 

  15. Greenwald RJ et al. (2005) The B7 family revisited. Annu Rev Immunol 23: 515–548

    Article  Google Scholar 

  16. Nurieva RI (2005) Regulation of immune and autoimmune responses by ICOS-B7h interaction. Clin Immunol 115: 19–25

    Article  CAS  Google Scholar 

  17. Leibson PJ (2004) The regulation of lymphocyte activation by inhibitory receptors. Curr Opin Immunol 16: 328–336

    Article  CAS  Google Scholar 

  18. Kang YM et al. (2002) CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J Exp Med 195: 1325–1336

    Article  CAS  Google Scholar 

  19. Weyand CM et al. (2005) B cells in rheumatoid synovitis. Arthritis Res Ther 7 (Suppl 3): S9–S12

    Article  Google Scholar 

  20. Seyler TM et al (2005) BLyS and APRIL in rheumatoid arthritis. J Clin Invest 115: 3083–3092

    Article  CAS  Google Scholar 

  21. Takemura S et al. (2001) T cell activation in rheumatoid synovium is B cell dependent. J Immunol 167: 4710–4718

    Article  CAS  Google Scholar 

  22. Goronzy JJ and Weyand CM (2004) T-cell regulation in rheumatoid arthritis. Curr Opin Rheumatol 16: 212–217

    Article  CAS  Google Scholar 

  23. Mor A et al. (2005) The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 115: 118–128

    Article  CAS  Google Scholar 

  24. Takemura S et al. (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167: 1072–1080

    Article  CAS  Google Scholar 

  25. Weyand CM and Goronzy JJ (2003) Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 987: 140–149

    Article  CAS  Google Scholar 

  26. Weyand CM et al. (2001) Ectopic lymphoid organogenesis: a fast track for autoimmunity. Am J Pathol 159: 787–793

    Article  CAS  Google Scholar 

  27. Taylor PC and Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17: 293–298

    Article  Google Scholar 

  28. Park YW et al. (2004) Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol 165: 2087–2098

    Article  CAS  Google Scholar 

  29. Klimiuk PA et al. (1999) Production of cytokines and metalloproteinases in rheumatoid synovitis is T cell dependent. Clin Immunol 90: 65–78

    Article  CAS  Google Scholar 

  30. Kraan MC et al. (2004) T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Ann Rheum Dis 63: 483–488

    Article  CAS  Google Scholar 

  31. Verburg R et al. (2005) The outcome of intensive immunosuppression and autologous stemcell transplantation in patients with severe rheumatoid arthritis is associated with the composition of synovial T cell infiltration. Ann Rheum Dis 64: 1397–1405

    Article  CAS  Google Scholar 

  32. Miossec P (2004) An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol 16: 218–222

    Article  CAS  Google Scholar 

  33. Suzuki T et al. (1997) Synoviocyte proliferation in joints of SCID mice induced by toxic shock syndrome toxin-1 stimulated T cells from patient with rheumatoid arthritis. J Rheumatol 24: 1115–1121

    CAS  PubMed  Google Scholar 

  34. Nanki T et al. (2002) Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into the synovium of patients with rheumatoid arthritis. Arthritis Rheum 46: 2878–2883

    Article  CAS  Google Scholar 

  35. Davila E et al. (2005) Cell-based immunotherapy with suppressor CD8+ T cells in rheumatoid arthritis. J Immunol 174: 7292–7301

    Article  CAS  Google Scholar 

  36. Kotake S et al. (2001) Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 44: 1003–1012

    Article  CAS  Google Scholar 

  37. Rivollier A et al. (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104: 4029–4037

    Article  CAS  Google Scholar 

  38. Ogawa Y et al. (2003) Suppression of osteoclastogenesis in rheumatoid arthritis by induction of apoptosis in activated CD4+ T cells. Arthritis Rheum 48: 3350–3358

    Article  Google Scholar 

  39. Keystone EC (2003) Abandoned therapies and unpublished trials in rheumatoid arthritis. Curr Opin Rheumatol 15: 253–258

    Article  CAS  Google Scholar 

  40. Gerards AH et al. (2003) Cyclosporin A monotherapy versus cyclosporin A and methotrexate combination therapy in patients with early rheumatoid arthritis: a double blind randomised placebo controlled trial. Ann Rheum Dis 62: 291–296

    Article  CAS  Google Scholar 

  41. Yocum DE et al. (2004) Safety of tacrolimus in patients with rheumatoid arthritis: long-term experience. Rheumatology (Oxf) 43: 992–999

    Article  CAS  Google Scholar 

  42. Rep MH et al. (1997) Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-gamma secreting TH1 cells in humans. J Clin Invest 99: 2225–2231

    Article  CAS  Google Scholar 

  43. Jendro MC et al. (1995) Emergence of oligoclonal T cell populations following therapeutic T cell depletion in rheumatoid arthritis. Arthritis Rheum 38: 1242–1251

    Article  CAS  Google Scholar 

  44. Koetz K et al. (2000) T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci USA 97: 9203–9208

    Article  CAS  Google Scholar 

  45. Schonland SO et al. (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci USA 100: 13471–13476

    Article  Google Scholar 

  46. Koffeman EC et al. (2005) Recent developments in immunomodulatory peptides in juvenile rheumatic diseases: from trigger to dimmer? Curr Opin Rheumatol 17: 600–605

    Article  CAS  Google Scholar 

  47. Prakken BJ et al. (2004) Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci USA 101: 4228–4233

    Article  CAS  Google Scholar 

  48. Singh R et al. (2005) Emerging biologic therapies in rheumatoid arthritis: cell targets and cytokines. Curr Opin Rheumatol 17: 274–279

    CAS  PubMed  Google Scholar 

  49. Ruderman EM and Pope RM (2005) The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Ther 7 (Suppl 2): S21–25

    Article  Google Scholar 

  50. Paust S et al. (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101: 10398–10403

    Article  CAS  Google Scholar 

  51. Abrams JR et al. (1999) CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 103: 1243–1252

    Article  CAS  Google Scholar 

  52. Moreland LW et al. (2002) Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum 46: 1470–1479

    Article  CAS  Google Scholar 

  53. Kremer JM et al. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349: 1907–1915

    Article  CAS  Google Scholar 

  54. Kremer JM et al. (2005) Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase IIb, double-blind, randomized, placebo-controlled trial. Arthritis Rheum 52: 2263–2271

    Article  CAS  Google Scholar 

  55. Kremer J et al. (2004) AIM Study— Phase III Study of Abatacept (CTLA4Ig) in patients with rheumatoid arthritis who are inadequate responders to methotrexate Trial. [http://www.hopkins-arthritis.som.jhmi.edu/edu/acr2004/ra-treatments.html#lb2] (accessed 2 February 2006)

  56. Genovese MC et al. (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353: 1114–1123

    Article  CAS  Google Scholar 

  57. Chamian F and Krueger JG (2004) Psoriasis vulgaris: an interplay of T lymphocytes, dendritic cells, and inflammatory cytokines in pathogenesis. Curr Opin Rheumatol 16: 331–337

    Article  Google Scholar 

  58. Chamian F et al. (2005) Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci USA 102: 2075–2080

    Article  CAS  Google Scholar 

  59. Weyand CM et al. (2000) Cell–cell interactions in synovitis. Interactions between T cells and B cells in rheumatoid arthritis. Arthritis Res 2: 457–463

    Article  CAS  Google Scholar 

  60. Ponchel F et al. (2002) Dysregulated lymphocyte proliferation and differentiation in patients with rheumatoid arthritis. Blood 100: 4550–4556

    Article  CAS  Google Scholar 

  61. Weyand CM et al. (2003) Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol 38: 833–841

    Article  CAS  Google Scholar 

  62. Groh V et al. (2003) Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100: 9452–9457

    Article  CAS  Google Scholar 

  63. Sawai H et al. (2005) T cell costimulation by fractalkine-expressing synoviocytes in rheumatoid arthritis. Arthritis Rheum 52: 1392–1401

    Article  CAS  Google Scholar 

  64. Yen JH et al. (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193: 1159–1167

    Article  CAS  Google Scholar 

  65. Warrington KJ et al. (2001) CD4+,CD28 T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis Rheum 44: 13–20

    Article  CAS  Google Scholar 

  66. Bryl E et al. (2005) Modulation of CD28 expression with anti-tumor necrosis factor-alpha therapy in rheumatoid arthritis. Arthritis Rheum 52: 2996–3003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by grants from the NIH. The authors thank Dr Sergey Pryshchep for preparing the figures and Tamela Yeargin for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M Weyand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyand, C., Goronzy, J. T-cell-targeted therapies in rheumatoid arthritis. Nat Rev Rheumatol 2, 201–210 (2006). https://doi.org/10.1038/ncprheum0142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing