Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis

Abstract

The discovery of osteoprotegerin, receptor activator of nuclear factor kappa B (RANK) and RANK ligand as critical molecular determinants of osteoclastogenesis and regulators of bone resorption, has revolutionized our understanding of the processes of normal and pathological bone biology. Altering the relative biological availabilities of these molecules has direct consequences for the regulation of both bone resorption and bone remodeling. Importantly, recent research suggests a pivotal role for these molecules in mediating cancer-induced bone destruction. This review summarizes the current evidence of osteoprotegerin, RANK ligand and RANK involvement in the pathophysiology of skeletal metastasis, and of therapeutic targeting of this process.

Key Points

  • The equilibrium between bone resorption and new bone formation is disrupted in tumor cells, with most displaying osteolytic features

  • Patterns of OPG expression differ in primary tumors compared with metastatic lesions, even within the same patient, and could be promising markers of disease progression

  • The RANKL: OPG ratio is significantly increased in cancer patients and those with other osteolytic pathologies, which may be used as a prognostic indicator of osteolysis

  • Preclinical data indicate that targeting resorption via inhibition of RANKL activity might be effective in managing pain

  • RANKL-independent pathways important in normal bone remodeling could also play a role in the regulation of cancer-related bone lesions

  • Understanding the process of bone resorption will provide new insights into the mechanism of bone metastases, ultimately leading to new treatment and prevention strategies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiographs of the femurs of 4–6-week-old mice that lack functional genes for OPG, RANKL or RANK
Figure 2: Model of the role of OPG and RANKL in cancer-bone interactions
Figure 3: Serum OPG levels in prostate cancer increase with disease progression
Figure 4: Administration of OPG-Fc inhibits the establishment and growth of lytic human prostate cancer lesions in the bones of immunocompromised mice

Similar content being viewed by others

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2: 584–593

    Article  CAS  Google Scholar 

  2. Roudier MP et al. (2004) Histological, immunophenotypic and histomorphometric characterisation of prostate cancer bone metastasis. In The Biology of Skeletal Metastases, 311–339 (Eds Keller ET and Chung LWK) Boston: Kluwer Academic Publishers

    Chapter  Google Scholar 

  3. Seibel MJ (2005) Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol 2: 504–517

    Article  CAS  Google Scholar 

  4. Nielsen OS et al. (1991) Bone metastases: pathophysiology and management policy. J Clin Oncol 9: 509–524

    Article  CAS  Google Scholar 

  5. Roodman GD (1996) Advances in bone biology: the osteoclast. Endocr Rev 17: 308–332

    CAS  PubMed  Google Scholar 

  6. Simonet WS et al. (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319

    Article  CAS  Google Scholar 

  7. Tsuda E et al. (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234: 137–142

    Article  CAS  Google Scholar 

  8. Bucay N et al. (1998) Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12: 1260–1268

    Article  CAS  Google Scholar 

  9. Yasuda H (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OCIF/OPG inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337

    Article  Google Scholar 

  10. Yasuda H et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/ RANKL. Proc Natl Acad Sci USA 95: 3597–3602

    Article  CAS  Google Scholar 

  11. Lacey DL et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176

    Article  CAS  Google Scholar 

  12. Anderson DM et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390: 175–179

    Article  CAS  Google Scholar 

  13. Wong BR et al. (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186: 2075–2080

    Article  CAS  Google Scholar 

  14. Matsuzaki K et al. (1998) Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun 246: 199–204

    Article  CAS  Google Scholar 

  15. Burgess TL et al. (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 145: 527–538

    Article  CAS  Google Scholar 

  16. O'Brien EA et al. (2000) Osteoprotegerin ligand regulates osteoclast adherence to the bone surface in mouse calvaria. Biochem Biophys Res Commun 274: 281–290

    Article  CAS  Google Scholar 

  17. Lacey DL et al. (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157: 435–448

    Article  CAS  Google Scholar 

  18. Hsu H et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96: 3540–3545

    Article  CAS  Google Scholar 

  19. Body J-J et al. (2003) A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97 (Suppl): S887–S892

    Article  Google Scholar 

  20. Whyte MP et al. (2002) Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med 347: 175–184

    Article  CAS  Google Scholar 

  21. Hughes AE et al. (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24: 45–48

    Article  CAS  Google Scholar 

  22. Theoleyre T et al. (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 15: 457–475

    Article  CAS  Google Scholar 

  23. Standal T et al. (2002) Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100: 3002–3007

    Article  CAS  Google Scholar 

  24. Mosheimer BA et al. (2005) Syndecan-1 is involved in osteoprotegerin-induced chemotaxis in human peripheral blood monocytes. J Clin Endocrinol Metab 90: 2964–2971

    Article  CAS  Google Scholar 

  25. Keller ET and Brown J (2004) Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91: 718–729

    Article  CAS  Google Scholar 

  26. Brown JM et al. (2004) OPG, RANKL, and RANK in cancer metastasis: expression and regulation. In The Biology of Skeletal Metastases, 149–172 (Eds Keller ET and Chung LWK) Boston: Kluwer Academic Publishers

    Chapter  Google Scholar 

  27. Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80 (Suppl): S1546–S1556

    Article  Google Scholar 

  28. Keller ET and Brown JM (2003) Osteoprotegerin, receptor activator of NFκB (RANK) and RANK ligand in cancer. In Research Advances in Cancer 3, 81–93 (Ed Mohan RM) Kerala: Global Research Network

    Google Scholar 

  29. Dunstan CR (2005) The role of RANK, RANK ligand and osteoprotegerin in the lytic effects and growth of bone metastases. In Textbook of Bone Metastases, 51–62 (Eds Jasmin C et al.) Chichester: John Wiley and Sons, Ltd

    Google Scholar 

  30. Bhatia P et al. (2005) Expression of receptor activator of NF-kappa B is inversely correlated with metastatic phenotype in breast carcinoma. Clin Cancer Res 11: 162–165

    CAS  PubMed  Google Scholar 

  31. Reinholz MM et al. (2002) Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat 74: 255–269

    Article  CAS  Google Scholar 

  32. Brown JM et al. (2001) Osteoprotegerin and RANK ligand expression in prostate cancer. Urology 57: 611–616

    Article  CAS  Google Scholar 

  33. Heider U et al. (2003) Expression of receptor activator of nuclear factor κB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma. Clin Cancer Res 9: 1436–1440

    CAS  PubMed  Google Scholar 

  34. Farrugia AN et al. (2003) Receptor activator of nuclear factor-κB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 63: 5438–5445

    CAS  PubMed  Google Scholar 

  35. Ito R et al. (2003) Expression of osteoprotegerin correlates with aggressiveness and poor prognosis of gastric carcinoma. Virchows Arch 443: 146–151

    Article  CAS  Google Scholar 

  36. Pearse RN et al. (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98: 11581–11586

    Article  CAS  Google Scholar 

  37. Lipton A et al. (2002) Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 8: 2306–2310

    CAS  PubMed  Google Scholar 

  38. Seidel C et al. on behalf of The Nordic Myeloma Study Group (2001) Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 98: 2269–2271

  39. Kyrtsonis MC et al. (2004) Serum syndecan-1, basic fibroblast growth factor and osteoprotegerin in myeloma patients at diagnosis and during the course of the disease. Eur J Haematol 72: 252–258

    Article  CAS  Google Scholar 

  40. Martinetti A et al. (2004) Osteoprotegerin and osteopontin serum values in postmenopausal advanced breast cancer patients treated with anastrozole. Endocr Relat Cancer 11: 771–779

    Article  CAS  Google Scholar 

  41. Mizutani Y et al. (2004) Prognostic significance of serum osteoprotegerin levels in patients with bladder carcinoma. Cancer 101: 1794–1802

    Article  CAS  Google Scholar 

  42. Brown JM et al. (2001) Serum osteoprotegerin levels are increased in patients with advanced prostate cancer. Clin Cancer Res 7: 2977–2983

    CAS  PubMed  Google Scholar 

  43. Eaton CL et al. (2004) Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. Prostate 59: 304–310

    Article  CAS  Google Scholar 

  44. Jung K et al. (2004) Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 111: 783–791

    Article  CAS  Google Scholar 

  45. Jung K et al. (2003) Serum osteoprotegerin and receptor activator of nuclear factor-kappa B ligand as indicators of disturbed osteoclastogenesis in patients with prostate cancer. J Urol 170: 2302–2305

    Article  Google Scholar 

  46. Terpos E et al. (2003) Soluble receptor activator of nuclear factor κB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102: 1064–1069

    Article  CAS  Google Scholar 

  47. Grimaud E et al. (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163: 2021–2031

    Article  CAS  Google Scholar 

  48. Sezer O et al. (2003) RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101: 2094–2098

    Article  CAS  Google Scholar 

  49. Vanderkerken K et al. (2003) Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev 194: 196–206

    Article  CAS  Google Scholar 

  50. Sordillo EM and Pearse RN (2003) RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer 97 (Suppl): S802–S812

    Article  Google Scholar 

  51. Doran PM et al. (2004) Native osteoprotegerin gene transfer inhibits the development of murine osteolytic bone disease induced by tumor xenografts. Exp Hematol 32: 351–359

    Article  CAS  Google Scholar 

  52. Capparelli C et al. (2000) Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Res 60: 783–787

    CAS  PubMed  Google Scholar 

  53. Morony S et al. (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61: 4432–4436

    CAS  PubMed  Google Scholar 

  54. Zhang J et al. (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107: 1235–1244

    Article  CAS  Google Scholar 

  55. Bekker PJ et al. (2004) A single dose controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in post-menopausal women. J Bone Miner Res 19: 1059–1066

    Article  CAS  Google Scholar 

  56. Onyia JE et al. (2004) Novel and selective small molecule stimulators of osteoprotegerin expression inhibit bone resorption. J Pharmacol Exp Ther 309: 369–379

    Article  CAS  Google Scholar 

  57. Viereck V et al. (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291: 680–686

    Article  CAS  Google Scholar 

  58. Mackie PS et al. (2001) Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer 84: 951–958

    Article  CAS  Google Scholar 

  59. Pan B et al. (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-α converting enzyme (TACE). J Bone Miner Res 19: 147–154

    Article  CAS  Google Scholar 

  60. Corey E et al. (2003) Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res 9: 295–306; Erratum in: Clin Cancer Res 9: 1574–1575

    CAS  PubMed  Google Scholar 

  61. Honore P et al. (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6: 521–528

    Article  CAS  Google Scholar 

  62. Luger NM et al. (2001) Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res 61: 4038–4047

    CAS  PubMed  Google Scholar 

  63. Morony S et al. (2005) The RANKL inhibitor osteoprotegerin (OPG) causes greater suppression of bone resorption and hypercalcemia compared to bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146: 3235–3243

    Article  CAS  Google Scholar 

  64. Akatsu T et al. (1998) Osteoclastogenesis inhibitory factor exhibits hypocalcemic effects in normal mice and in hypercalcemic nude mice carrying tumors associated with humoral hypercalcemia of malignancy. Bone 23: 495–498

    Article  CAS  Google Scholar 

  65. Zhang J et al. (2003) Soluble receptor activator of nuclear factor κB Fc diminishes prostate cancer progression in bone. Cancer Res 63: 7883–7890

    CAS  PubMed  Google Scholar 

  66. Holen I et al. (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62: 1619–1623

    CAS  PubMed  Google Scholar 

  67. Shipman CM and Croucher PI (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63: 912–916

    CAS  PubMed  Google Scholar 

  68. Hausler KD et al. (2004) Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 19: 1873–1881

    Article  CAS  Google Scholar 

  69. Zhou H et al. (2001) A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J Biol Chem 276: 14916–14923

    Article  CAS  Google Scholar 

  70. Hu YS et al. (2004) Isolation of a human homolog of osteoclast inhibitory lectin that inhibits the formation and function of osteoclasts. J Bone Miner Res 19: 89–99

    Article  CAS  Google Scholar 

  71. Zhou H et al. (2002) Osteoclast inhibitory lectin, a family of new osteoclast inhibitors. J Biol Chem 277: 48808–48815

    Article  CAS  Google Scholar 

  72. Bendre MS et al. (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33: 28–37

    Article  CAS  Google Scholar 

  73. Huang L et al. (2003) Receptor activator of NF-κB ligand (RANKL) is expressed in chondroblastoma: possible involvement in osteoclastic giant cell recruitment. Mol Pathol 56: 116–120

    Article  CAS  Google Scholar 

  74. Kumamoto H and Ooya K (2004) Expression of parathyroid hormone-related protein (PTHrP), osteoclast differentiation factor (ODF)/receptor activator of nuclear factor-κB ligand (RANKL) and osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin (OPG) in ameloblastomas. J Oral Pathol Med 33: 46–52

    Article  CAS  Google Scholar 

  75. Atkins GJ et al. (2000) Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res 15: 640–649

    Article  CAS  Google Scholar 

  76. Good CR et al. (2002) Immunohistochemical study of receptor activator of nuclear factor kappa-B ligand (RANK-L) in human osteolytic bone tumors. J Surg Oncol 79: 174–179

    Article  Google Scholar 

  77. Sezer O et al. (2002) Immunocytochemistry reveals RANKL expression of myeloma cells. Blood 99: 4646–4647

    Article  CAS  Google Scholar 

  78. Giuliani N et al. (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98: 3527–3533

    Article  CAS  Google Scholar 

  79. Huang L et al. (2002) Tumour cells produce receptor activator of NF-κB ligand (RANKL) in skeletal metastases. J Clin Pathol 55: 877–878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge those whose work was not directly cited because of space constraints. This work was supported in part by the Cure Cancer Australia Foundation, the Clive and Vera Ramaciotti Foundation, Amgen Inc., National Health and Medical Research Council grant No. 352322, the New South Wales Government Ministry for Science and Medical Research BioFirst Award and the University of Sydney Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M Blair.

Ethics declarations

Competing interests

CR Dunstan is an owner of Amgen stock. Part funding was received from Amgen Inc for the study described in Figure 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, J., Zhou, H., Seibel, M. et al. Mechanisms of Disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Rev Clin Oncol 3, 41–49 (2006). https://doi.org/10.1038/ncponc0381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing