Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: metabonomics in gastroenterology—basic principles and potential clinical applications

Abstract

Metabonomics—the study of metabolic changes in an integrated biologic system—is an emerging field. This discipline joins the other 'omics' (genomics, transcriptomics and proteomics) to give rise to a comprehensive, systems-biology approach to the evaluation of holistic in vivo function. Metabonomics, especially when based on nuclear magnetic resonance spectroscopy, has the potential to identify biomarkers and prognostic factors, enhance clinical diagnosis, and expand hypothesis generation. As a consequence, the use of metabonomics has been extensively explored in the past decade, and applied successfully to the study of human diseases, toxicology, microbes, nutrition, and plant biology. This Review introduces the basic principles of nuclear magnetic resonance spectroscopy and commonly used tools for multivariate data analysis, before considering the applications and future potential of metabonomics in basic and clinical research, with emphasis on applications in the field of gastroenterology.

Key Points

  • Metabonomics has become increasingly attractive, as genomics and proteomics only tells us what might happen, but metabonomics tells us what actually did happen

  • NMR spectroscopy has several advantages, because it is rapid, requires minimal or no sample preparation, is non-destructive of the samples, requires only small sample amounts, and often allows use of samples acquired in a noninvasive or minimally invasive manner; it has an unequalled reproducibility and stability, and is virtually the only technique available that can investigate the metabolic composition of intact tissue

  • NMR spectroscopy based metabonomics has the potential of becoming an extremely powerful platform in terms of biomarker identification, improving clinical diagnostic and prognostic information, and hypothesis generation

  • Metabonomics joins the other 'omics'—genomics, transcriptomics and proteomics—as sciences that collectively gives rise to a comprehensive, systems-biology approach to the evaluation of holistic in vivo function

  • Integration of the different 'omics' is a relatively new concept, especially in the field of gastroenterology, and further investigation into their possible applications is warranted

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between the different 'omics' and their interaction via defined biologic processes.
Figure 2: Analysis of classic NMR spectra is not a 'one peak, one compound' approach, but a potentially complex procedure.
Figure 3: Unit variance scaling and mean centering.
Figure 4: Principal component analysis.
Figure 5: Principal component analysis applied.
Figure 6: A geometric representation of partial least-squares (PLS) regression.

Similar content being viewed by others

References

  1. Nicholson JK et al. (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181–1189

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell S and Carmichael PL (2005) Metabonomics and the endocrine system. Mol Cell Endocrinol 244: 10–14

    Article  CAS  PubMed  Google Scholar 

  3. Raamsdonk LM et al. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19: 45–50

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt C (2004) Metabolomics takes its place as latest up-and-coming “omic” science. J Natl Cancer Inst 96: 732–734

    Article  PubMed  Google Scholar 

  5. Bezabeh T et al. (2001) The use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases: distinguishing ulcerative colitis from Crohn's disease. Am J Gastroenterol 96: 442–448

    Article  CAS  PubMed  Google Scholar 

  6. Marchesi JR et al. (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6: 546–551

    Article  CAS  PubMed  Google Scholar 

  7. Brindle JT et al. (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8: 1439–1444

    Article  CAS  PubMed  Google Scholar 

  8. Kirschenlohr HL et al. (2006) Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat Med 12: 705–710

    Article  CAS  PubMed  Google Scholar 

  9. Griffin JL et al. (2002) Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy. FEBS Lett 530: 109–116

    Article  CAS  PubMed  Google Scholar 

  10. Prabakaran S et al. (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9: 684–697

    Article  CAS  PubMed  Google Scholar 

  11. Griffin JL and Bollard ME (2004) Metabonomics: its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab 5: 389–398

    Article  CAS  PubMed  Google Scholar 

  12. Nicholson JK et al. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1: 153–161

    Article  CAS  PubMed  Google Scholar 

  13. Coen M et al. (2004) Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J Pharm Biomed Anal 35: 93–105

    Article  CAS  PubMed  Google Scholar 

  14. Craig A et al. (2006) Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 5: 1586–1601

    Article  CAS  PubMed  Google Scholar 

  15. Griffin JL et al. (2004) An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver. Physiol Genomics 17: 140–149

    Article  CAS  PubMed  Google Scholar 

  16. Schnackenberg LK et al. (2006) An integrated study of acute effects of valproic acid in the liver using metabonomics, proteomics, and transcriptomics platforms. OMICS 10: 1–14

    Article  CAS  PubMed  Google Scholar 

  17. Tang W (2007) Drug metabolite profiling and elucidation of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 3: 407–420

    Article  CAS  PubMed  Google Scholar 

  18. Rezzi S et al. (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6: 513–525

    Article  CAS  PubMed  Google Scholar 

  19. Kemsley EK et al. (2007) Multivariate techniques and their application in nutrition: a metabolomics case study. Br J Nutr 98: 1–14

    Article  CAS  PubMed  Google Scholar 

  20. Fiehn O et al. (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18: 1157–1161

    Article  CAS  PubMed  Google Scholar 

  21. Allen J et al. (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21: 692–696

    Article  CAS  PubMed  Google Scholar 

  22. Macomber RS (1998) A Complete Introduction to Modern NMR Spectroscopy. New York: John Wiley & Sons Inc.

    Google Scholar 

  23. Lindon JC et al. (2003) So what's the deal with metabonomics? Anal Chem 75: 384A–391A

    Article  CAS  PubMed  Google Scholar 

  24. Nicholson JK and Wilson ID (2003) Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2: 668–676

    Article  CAS  PubMed  Google Scholar 

  25. Reo NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25: 375–382

    Article  CAS  PubMed  Google Scholar 

  26. Garrod S et al. (1999) High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41: 1108–1118

    Article  CAS  PubMed  Google Scholar 

  27. Moka D et al. (1998) Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 17: 125–132

    Article  CAS  PubMed  Google Scholar 

  28. Cheng LL et al. (1997) Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 94: 6408–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Millis KK et al. (1997) Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn Reson Med 38: 399–403

    Article  CAS  PubMed  Google Scholar 

  30. Tomlins AM et al. (1998) High resolution 1H NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples. Biochim Biophys Acta 1379: 367–380

    Article  CAS  PubMed  Google Scholar 

  31. Lenz EM and Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6: 443–458

    Article  CAS  PubMed  Google Scholar 

  32. Keun HC et al. (2002) Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem Res Toxicol 15: 1380–1386

    Article  CAS  PubMed  Google Scholar 

  33. Chen JH et al. (2001) Biochemical analysis using high-resolution magic angle spinning NMR spectroscopy distinguishes lipoma-like well-differentiated liposarcoma from normal fat. J Am Chem Soc 123: 9200–9201

    Article  CAS  PubMed  Google Scholar 

  34. Griffin JL et al. (2003) Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochim Biophys Acta 1619: 151–158

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y et al. (2003) Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. Anal Biochem 323: 26–32

    Article  CAS  PubMed  Google Scholar 

  36. Liu M et al. (1997) Measurement of biomolecular diffusion coefficients in blood plasma using two-dimensional 1H–1H diffusion-edited total-correlation NMR spectroscopy. Anal Chem 69: 1504–1509

    Article  CAS  PubMed  Google Scholar 

  37. Cheng LL et al. (1998) Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J Magn Reson 135: 194–202

    Article  CAS  PubMed  Google Scholar 

  38. Keun HC et al. (2002) Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem 74: 4588–4593

    Article  CAS  PubMed  Google Scholar 

  39. Deming SN (1986) Chemometrics: an overview. Clin Chem 32: 1702–1706

    CAS  PubMed  Google Scholar 

  40. Eriksson L et al. (2004) Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Anal Bioanal Chem 380: 419–429

    Article  CAS  PubMed  Google Scholar 

  41. Eriksson L et al. (2006) Megavariate analysis of environmental QSAR data. Part I—a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol Divers 10: 169–186

    Article  CAS  PubMed  Google Scholar 

  42. Eriksson L et al. (2006) Megavariate analysis of environmental QSAR data. Part II—investigating very complex problem formulations using hierarchical, non-linear and batch-wise extensions of PCA and PLS. Mol Divers 10: 187–205

    Article  CAS  PubMed  Google Scholar 

  43. Lindon JC et al. (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog NMR Spect 39: 1–40

    Article  CAS  Google Scholar 

  44. Trygg J et al. (2007) Chemometrics in metabonomics. J Proteome Res 6: 469–479

    Article  CAS  PubMed  Google Scholar 

  45. Lavine B and Workman JJ Jr (2004) Chemometrics. Anal Chem 76: 3365–3371

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y et al. (2008) Magic angle spinning NMR and 1H–31P heteronuclear statistical total correlation spectroscopy of intact human gut biopsies. Anal Chem 80: 1058–1066

    Article  CAS  PubMed  Google Scholar 

  47. Schlens J (online 10 December 2005) A tutorial on principal component analysis. [http://www.snl.salk.edu/~shlens/pub/notes/pca.pdf] (accessed 4 March 2008)

  48. Cloarec O et al. (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77: 1282–1289

    Article  CAS  PubMed  Google Scholar 

  49. Trygg J and Wold S (2003) O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter. J Chemomet 17: 53–64

    Article  CAS  Google Scholar 

  50. Trygg J (2002) O2-PLS for qualitative and quantitative analysis in multivariate calibration. J Chemomet 16: 283–293

    Article  CAS  Google Scholar 

  51. Holmes E et al. (2007) Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal Chem 79: 2629–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coen M et al. (2007) Heteronuclear 1H–31P statistical total correlation NMR spectroscopy of intact liver for metabolic biomarker assignment: application to galactosamine-induced hepatotoxicity. Anal Chem 79: 8956–8966

    Article  CAS  PubMed  Google Scholar 

  53. Geboes K and De HG (2003) Indeterminate colitis. Inflamm Bowel Dis 9: 324–331

    Article  PubMed  Google Scholar 

  54. Hildebrand H et al. (1991) Chronic inflammatory bowel disease in children and adolescents in Sweden. J Pediatr Gastroenterol Nutr 13: 293–297

    Article  CAS  PubMed  Google Scholar 

  55. Lennard-Jones JE and Shivananda S (1997) Clinical uniformity of inflammatory bowel disease at presentation and during the first year of disease in the north and south of Europe. Eur J Gastroenterol Hepatol 9: 353–359

    Article  CAS  PubMed  Google Scholar 

  56. Meucci G et al. (1999) Frequency and clinical evolution of indeterminate colitis: a retrospective multi-centre study in northern Italy. Eur J Gastroenterol Hepatol 11: 909–913

    Article  CAS  PubMed  Google Scholar 

  57. Nicholls RJ and Wells AD (1992) Indeterminate colitis. Baillieres Clin Gastroenterol 6: 105–112

    Article  CAS  PubMed  Google Scholar 

  58. Riegler G et al. (1997) Clinical evolution in an outpatient series with indeterminate colitis. Dis Colon Rectum 40: 437–439

    Article  CAS  PubMed  Google Scholar 

  59. Csillag C et al. (2007) Clinical phenotype and gene expression profile in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 292: G298–G304

    Article  CAS  PubMed  Google Scholar 

  60. Distler P and Holt PR (1997) Are right- and left-sided colon neoplasms distinct tumors? Dig Dis 15: 302–311

    Article  CAS  PubMed  Google Scholar 

  61. Glebov OK et al. (2003) Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev 12: 755–762

    CAS  PubMed  Google Scholar 

  62. Wang Y et al. (2005) Biochemical characterization of rat intestine development using high-resolution magic-angle-spinning 1H NMR spectroscopy and multivariate data analysis. J Proteome Res 4: 1324–1329

    Article  CAS  PubMed  Google Scholar 

  63. Bates MD et al. (2002) Novel genes and functional relationships in the adult mouse gastrointestinal tract identified by microarray analysis. Gastroenterology 122: 1467–1482

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y et al. (2007) Topographical variation in metabolic signatures of human gastrointestinal biopsies revealed by high-resolution magic-angle spinning 1H NMR spectroscopy. J Proteome Res 6: 3944–3951

    Article  CAS  PubMed  Google Scholar 

  65. Saric J et al. (2008) Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J Proteome Res 7: 352–360

    Article  CAS  PubMed  Google Scholar 

  66. Nielsen OH et al. (2000) Clinical reviews: established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol 95: 359–367

    CAS  PubMed  Google Scholar 

  67. Wang Y et al. (2004) Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci USA 101: 12676–12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gerstle RJ et al. (2000) The role of neural networks in improving the accuracy of MR spectroscopy for the diagnosis of head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 21: 1133–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Griffin JL and Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4: 551–561

    Article  CAS  PubMed  Google Scholar 

  70. Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors: a review of pattern recognition methods. NMR Biomed 11: 148–156

    Article  CAS  PubMed  Google Scholar 

  71. Howells SL et al. (1992) An investigation of tumor 1H nuclear magnetic resonance spectra by the application of chemometric techniques. Magn Reson Med 28: 214–236

    Article  CAS  PubMed  Google Scholar 

  72. Preul MC et al. (1998) Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR Biomed 11: 192–200

    Article  CAS  PubMed  Google Scholar 

  73. Usenius JP et al. (1996) Automated classification of human brain tumours by neural network analysis using in vivo1H magnetic resonance spectroscopic metabolite phenotypes. Neuroreport 7: 1597–1600

    Article  CAS  PubMed  Google Scholar 

  74. Nelson SJ and Cha S (2003) Imaging glioblastoma multiforme. Cancer J 9: 134–145

    Article  CAS  PubMed  Google Scholar 

  75. Preul MC et al. (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2: 323–325

    Article  CAS  PubMed  Google Scholar 

  76. Guillevin R et al. (2007) Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neurooncol [10.1007/s11060-007-9508-y]

  77. Shukla-Dave A et al. (2002) Prediction of treatment response of head and neck cancers with 31P MR spectroscopy from pretreatment relative phosphomonoester levels. Acad Radiol 9: 688–694

    Article  PubMed  Google Scholar 

  78. Bolan PJ et al. (2003) In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med 50: 1134–1143

    Article  CAS  PubMed  Google Scholar 

  79. Meisamy S et al. (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo1H MR spectroscopy—a pilot study at 4 T. Radiology 233: 424–431

    Article  PubMed  Google Scholar 

  80. Claudino WM et al. (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25: 2840–2846

    Article  CAS  PubMed  Google Scholar 

  81. Bell JD and Bhakoo KK (1998) Metabolic changes underlying 31P MR spectral alterations in human hepatic tumours. NMR Biomed 11: 354–359

    Article  CAS  PubMed  Google Scholar 

  82. Li CW et al. (2005) Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T. Magn Reson Med 53: 770–776

    Article  CAS  PubMed  Google Scholar 

  83. Mueller-Lisse UG et al. (2001) Localized prostate cancer: effect of hormone deprivation therapy measured by using combined three-dimensional 1H MR spectroscopy and MR imaging: clinicopathologic case–controlled study. Radiology 221: 380–390

    Article  CAS  PubMed  Google Scholar 

  84. van Dorsten FA et al. (2004) Combined quantitative dynamic contrast-enhanced MR imaging and 1H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 20: 279–287

    Article  PubMed  Google Scholar 

  85. Arias-Mendoza F et al. (2004) Predicting treatment response in non-Hodgkin's lymphoma from the pretreatment tumor content of phosphoethanolamine plus phosphocholine. Acad Radiol 11: 368–376

    Article  PubMed  Google Scholar 

  86. Griffiths JR et al. (2002) Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1β (HIF-1β): evidence of an anabolic role for the HIF-1 pathway. Cancer Res 62: 688–695

    CAS  PubMed  Google Scholar 

  87. Griffithsv JR and Stubbs M (2003) Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv Enzyme Regul 43: 67–76

    Article  CAS  Google Scholar 

  88. Zhong H et al. (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59: 5830–5835

    CAS  PubMed  Google Scholar 

  89. Clish CB et al. (2004) Integrative biological analysis of the APOE*3-leiden transgenic mouse. OMICS 8: 3–13

    Article  CAS  PubMed  Google Scholar 

  90. Mayr M et al. (2004) Proteomic and metabolomic analysis of vascular smooth muscle cells: role of PKCδ. Circ Res 94: e87–e96

    Article  CAS  PubMed  Google Scholar 

  91. Verhoeckx KC et al. (2004) Characterization of anti-inflammatory compounds using transcriptomics, proteomics, and metabolomics in combination with multivariate data analysis. Int Immunopharmacol 4: 1499–1514

    Article  CAS  PubMed  Google Scholar 

  92. Wong MS et al. (2004) Metabolic and transcriptional patterns accompanying glutamine depletion and repletion in mouse hepatoma cells: a model for physiological regulatory networks. Physiol Genomics 16: 247–255

    Article  CAS  PubMed  Google Scholar 

  93. Griffin JL et al. (2007) The influence of pharmacogenetics on fatty liver disease in the Wistar and Kyoto rats: a combined transcriptomic and metabonomic study. J Proteome Res 6: 54–61

    Article  CAS  PubMed  Google Scholar 

  94. Heijne WH et al. (2003) Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochem Pharmacol 65: 857–875

    Article  CAS  PubMed  Google Scholar 

  95. Heijne WH et al. (2005) Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology. Expert Rev Proteomics 2: 767–780

    Article  CAS  PubMed  Google Scholar 

  96. Heijne WH et al. (2005) Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol Pathol 33: 425–433

    Article  CAS  PubMed  Google Scholar 

  97. Kleno TG et al. (2004) Combination of 'omics' data to investigate the mechanism(s) of hydrazine-induced hepatotoxicity in rats and to identify potential biomarkers. Biomarkers 9: 116–138

    Article  CAS  PubMed  Google Scholar 

  98. Ruepp SU et al. (2002) Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 65: 135–150

    Article  CAS  PubMed  Google Scholar 

  99. Stegmann A et al. (2006) Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation. Physiol Genomics 27: 141–155

    Article  CAS  PubMed  Google Scholar 

  100. Dumas ME et al. (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39: 666–672

    Article  CAS  PubMed  Google Scholar 

  101. Gupta RB et al. (2007) Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: a cohort study. Gastroenterology 133: 1099–1105

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by grants from the Danish Research Council, the Augustinus Foundation, Aase and Ejnar Danielsen's Foundation, Director Emil C Hertz and spouse Inger Hertz Foundation, and the Foundation of Graduate Engineer Frode V Nyegaard and spouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob T Bjerrum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerrum, J., Nielsen, O., Wang, Y. et al. Technology Insight: metabonomics in gastroenterology—basic principles and potential clinical applications. Nat Rev Gastroenterol Hepatol 5, 332–343 (2008). https://doi.org/10.1038/ncpgasthep1125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep1125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing