Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides

Abstract

In the past few years, organic–inorganic halide perovskites have rapidly emerged as promising materials for photovoltaic applications, but simultaneously achieving high performance and long-term stability has proved challenging. Here, we show a one-step solution-processing strategy using phosphonic acid ammonium additives that results in efficient perovskite solar cells with enhanced stability. We modify the surface of methylammonium lead triiodide (CH3NH3PbI3) perovskite by spin-coating its precursor solution in the presence of butylphosphonic acid 4-ammonium chloride. Morphological, structural and elemental analyses show that the phosphonic acid ammonium additive acts as a crosslink between neighbouring grains in the perovskite structure, through strong hydrogen bonding of the –PO(OH)2 and –NH3+ terminal groups to the perovskite surface. The additives facilitate the incorporation of the perovskite within a mesoporous TiO2 scaffold, as well as the growth of a uniform perovskite layer at the surface, enhancing the material's photovoltaic performance from 8.8 to 16.7% as well as its resistance to moisture.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cell configuration, crystal crosslinkers and crosslinked CH3NH3PbI3 crystals.
Figure 2: Characterization of the interaction between 4-ABPACl and CH3NH3PbI3 crystals.
Figure 3: Microscopy images.
Figure 4: Characterization by UV–vis spectroscopy and photovoltaic performances of pristine (green) and 4-ABPA-anchored (red) perovskites.
Figure 5: Stability study.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  2. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. Etgar, L. et al. Mesoscopic NH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    Article  CAS  Google Scholar 

  4. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  5. Hodes, G. Perovskite-based solar cells. Science 342, 317–318 (2013).

    Article  CAS  Google Scholar 

  6. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  Google Scholar 

  7. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  Google Scholar 

  8. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).

    Article  CAS  Google Scholar 

  9. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  CAS  Google Scholar 

  10. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  11. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    Article  CAS  Google Scholar 

  12. Im, J.-H. et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotech. 9, 927–932 (2014).

    Article  CAS  Google Scholar 

  13. Grätzel, M. Light and shade of perovskite solar cells. Nature Mater. 13, 838–842 (2014).

    Article  Google Scholar 

  14. McGehee, M. D. Perovskite solar cells: continuing to soar. Nature Mater. 13, 845–846 (2014).

    Article  CAS  Google Scholar 

  15. Malinkiewicz, O. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014).

    Article  CAS  Google Scholar 

  16. Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014).

    Article  CAS  Google Scholar 

  17. Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 126, 9831–10120 (2014).

    Article  Google Scholar 

  18. Dualeh, A. et al. Thermal behavior of methylammonium lead trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160–6164 (2014).

    Article  CAS  Google Scholar 

  19. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  Google Scholar 

  20. Pathak, S. K. et al. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2 . Adv. Funct. Mater. 24, 6046–6055 (2014).

    Article  CAS  Google Scholar 

  21. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article  CAS  Google Scholar 

  22. Mercier, N. (HO2C(CH2)3NH3)2(CH3NH3)Pb2I7: a predicted noncentrosymmetrical structure built up from carboxylic acid supramolecular synthons and bilayer perovskite sheets. CrystEngComm 7, 429–432 (2005).

    Article  CAS  Google Scholar 

  23. Li, Y., Zheng, G. & Lin, J. Synthesis, structure, and optical properties of a contorted 〈110〉-oriented layered hybrid perovskite: C3H11SN3PbBr4 . Eur. J. Inorg. Chem. 10, 1689–1692 (2008).

    Article  Google Scholar 

  24. Chaudhuri, R. G. & Paria, S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

    Article  Google Scholar 

  25. Liu, L. et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790–1793 (2015).

    Article  CAS  Google Scholar 

  26. Niu, G. et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014).

    Article  CAS  Google Scholar 

  27. Dar, M. I. et al. Investigation regarding the role of chloride in organic–inorganic halide perovskites obtained from chloride containing precursors. Nano Lett. 14, 6991–6996 (2014).

    Article  CAS  Google Scholar 

  28. Nanova, D. Unraveling the nanoscale morphologies of mesoporous perovskite solar cells and their correlation to device performance. Nano Lett. 14, 2735–2740 (2014).

    Article  CAS  Google Scholar 

  29. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  CAS  Google Scholar 

  30. Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    Article  CAS  Google Scholar 

  31. Eperon, G. E. et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014).

    Article  CAS  Google Scholar 

  32. Leijtens, T. et al. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J. Phys. Chem. Lett. 5, 1096–1102 (2014).

    Article  CAS  Google Scholar 

  33. Conings, B. et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014).

    Article  CAS  Google Scholar 

  34. Thompson, C. V. et al. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012).

    Article  CAS  Google Scholar 

  35. Im, J.-H., Kim, H.-S. & Park, N.-G. Morphology–photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3 . APL Mater. 2, 081510 (2014).

  36. Dualeh, A. et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014).

    Article  CAS  Google Scholar 

  37. Sanchez, R. S. et al. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014).

    Article  CAS  Google Scholar 

  38. Harms, H. A., Tétreault, N., Pellet, N., Bensimon, M. & Grätzel, M. Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites. Discuss. Faraday Soc. 176, 251–269 (2014).

    Article  CAS  Google Scholar 

  39. Smith, I. C. et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126, 11414–11417 (2014).

    Article  Google Scholar 

  40. Im, J.-H. et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    Article  CAS  Google Scholar 

  41. Kusama, H., Kurashige, M., Sayama, K., Yanagida, M. & Sugihara, H. Improved performance of black-dye-sensitized solar cells with nanocrystalline anatase TiO2 photoelectrodes prepared from TiCl4 and ammonium carbonate. J. Photochem. Photobiol. A 184, 163–169 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

M.G. acknowledges support from the European Union Seventh Framework Program (grant agreement no. 309194 ‘GLOBASOL’). X.L., M.I.D., M.K.N. and M.G. acknowledge financial support from the Swiss CTI project (15864.2 PFNM-NM) and the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 281063 of the Powerweave project. H.H. acknowledges financial support from the National Natural Science Foundation of China (91433203, 61474049) and the Ministry of Science and Technology of China (863, SS2013AA50303, 2015AA034601).

Author information

Authors and Affiliations

Authors

Contributions

M.G. directed the scientific research for this work and assumed all correspondence with the editor and reviewers. M.G., H.H. and X.L. devised the idea for the project. X.L. and C.Y. designed the experiments, and fabricated and measured the devices. M.I.D. and J.L. carried out materials characterization. M.T. contributed to stability measurements. X.L. and M.I.D. wrote the initial draft of the manuscript. All authors contributed to the discussion and writing of the final paper.

Corresponding author

Correspondence to Michael Grätzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2445 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ibrahim Dar, M., Yi, C. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature Chem 7, 703–711 (2015). https://doi.org/10.1038/nchem.2324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing