Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis

Abstract

In Drosophila melanogaster, apoptosis is controlled by the integrated actions of the Grim-Reaper (Grim-Rpr) and Drosophila Inhibitor of Apoptosis (DIAP) proteins (reviewed in refs 14). The anti-apoptotic DIAPs bind to caspases and inhibit their proteolytic activities. DIAPs also bind to Grim-Rpr proteins, an interaction that promotes caspase activity and the initiation of apoptosis. Using a genetic modifier screen, we identified four enhancers of grim-reaper-induced apoptosis that all regulate ubiquitination processes: uba-1, skpA, fat facets (faf), and morgue. Strikingly, morgue encodes a unique protein that contains both an F box and a ubiquitin E2 conjugase domain that lacks the active site Cys required for ubiquitin linkage. A reduction of morgue activity suppressed grim-reaper-induced cell death in Drosophila. In cultured cells, Morgue induced apoptosis that was suppressed by DIAP1. Targeted morgue expression downregulated DIAP1 levels in Drosophila tissue, and Morgue and Rpr together downregulated DIAP1 levels in cultured cells. Consistent with potential substrate binding functions in an SCF ubiquitin E3 ligase complex, Morgue exhibited F box-dependent association with SkpA and F box-independent association with DIAP1. Morgue may thus have a key function in apoptosis by targeting DIAP1 for ubiquitination and turnover.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitin pathway genes are genetic modifiers of grim-rpr-induced eye cell death.
Figure 2: Organization and expression of the morgue gene.
Figure 3: morgue function is important for grim-rpr-mediated cell death.
Figure 4: Morgue associates with SkpA and DIAP1, and negatively influences DIAP1 levels.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Abrams, J. M. Trends Cell Biol. 9, 435–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Bangs, P. & White, K. Dev. Dyn. 218, 68–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tittel, J. N. & Steller, H. Genome Biol. 1, 0003.1–0003.6 (2000).

    Article  Google Scholar 

  4. Vernooy, S. Y. et al. J. Cell Biol. 150, F69–F76 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Wing, J. P., Schwartz, L. M. & Nambu, J. R. Mech. Dev. 102, 193–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Rørth, P. et al. Development 125, 1049–1057 (1998).

    PubMed  Google Scholar 

  7. Tyers, M. & Jorgensen, P. Curr. Opin. Genet. Dev. 10, 54–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kipreos, E. T. & Pagano, M. Genome Biol. 1, 3002.1–3002.7 (2000).

    Article  Google Scholar 

  9. Cooley, L., Thompson, D. & Spradling, A. C. Proc. Natl Acad. Sci. USA 87, 3170–3173 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sancho, E. et al. Mol. Cell. Biol. 18, 576–589 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao, W., Lin, S. L., Broomfield, S., Chow, B. L. & Wei, Y. F. Nucleic Acids Res. 26, 3908–3914 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hofmann, R. M. & Pickart, C. M. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Cell 102, 533–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Hay, B. A. Cell Death Differ. 7, 1045–1056 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Orlowski, R. Z. Cell Death Differ. 6, 303–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Wojcik, C. Cell Mol. Life Sci. 56, 908–917 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Jesenberger, V. & Jentsch, S. Nature Rev. Mol. Cell Biol. 3, 112–121 (2002).

    Article  CAS  Google Scholar 

  19. Haas, A. L., Baboshina, O., Williams, B. & Schwartz, L. M. J. Biol Chem. 270, 9407–9412 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Grimm, L. M., Goldberg, A. L., Poirier, G. G., Schwartz, L. M. & Osborne, B. A. EMBO J. 15, 3835–3844 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sadoul, R. et al. EMBO J. 15, 3845–3852 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, H. et al. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  24. Zhou, L. et al. Proc. Natl Acad. Sci. USA 94, 5131–5136 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, Y. et al. J. Neurosci. 20, 4596–4605 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lisi, S., Mazzon, I. & White, K. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wing, J. P. et al. Curr. Biol. 12, 131–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Nucleic Acids Res. 16, 1043–1061 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holley, C.L., Olson, M.R., Colon-Ramos, D.A. & Kornbluth S. Nature Cell Biol.DOI: 10.1038/ncb798.

  30. Ryoo, H.D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Nature Cell Biol. DOI: 10.1038/ncb795.

  31. Hays, R., Wickline, L. & Cagan R. Nature Cell Biol. DOI: 10.1038/ncb794.

  32. Yoo et al. Nature Cell Biol. DOI: 10.1038/ncb793.

  33. Wilson et al. Nature Cell Biol. DOI: 10.1038/ncb799.

Download references

Acknowledgements

The authors are grateful to S. Boulton for providing a SkpA expression plasmid and purified GST–SkpA protein. We also thank the Bloomington Drosophila Stock Center, G. Reuter, J. Szidonya, the Berkeley Drosophila Genome Project and the Developmental Studies Hybridoma Bank for providing fly strains, DNAs and antibodies. We are grateful to R. Cagan for discussions on morgue gene analyses before publication. K.W. is supported by National Institutes of Health grant GM55568 and a grant from the Shiseido Company of Japan to the Massachusetts General Hospital/Harvard Medical School. L.M.S. and J.R.N. were supported by NIH grant AG55118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Nambu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure and table

Figure S1. morgue expression induces apoptosis in cultured Spodoptera Sf-9 cells. (PDF 67 kb)

Table 1. Modification of R/Grim-induced Eye Cell Death by EP Insertions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wing, J., Schreader, B., Yokokura, T. et al. Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nat Cell Biol 4, 451–456 (2002). https://doi.org/10.1038/ncb800

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing