Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth

Abstract

The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth. High RasGRP1 expression in colorectal cancer (CRC) patient samples correlates with a better clinical outcome. Biochemically, we find that RasGRP1 creates a negative feedback loop that limits proliferative EGFR–SOS1–Ras signals in CRC cells. Genetic Rasgrp1 depletion from mice with either an activating mutation in KRas or with aberrant Wnt signalling due to a mutation in Apc resulted in both cases in exacerbated Ras–ERK signalling and cell proliferation. The unexpected opposing cell biological effects of EGFR–RasGRP1 and EGFR–SOS1 signals in the same cell shed light on the intricacy of EGFR-Ras signalling in normal epithelium and carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RasGRP1 is expressed in CRC cell lines and CRC patient tumour samples.
Figure 2: Rasgrp1 plays a role in intestinal epithelial cell proliferation and goblet cell generation.
Figure 3: Loss of one or two Rasgrp1 alleles exacerbates serrated dysplasia of KRasG12D epithelium.
Figure 4: EGFR connects to both RasGRP1 and SOS1.
Figure 5: Hyperactivation of RAS in EGF-stimulated KRASMUT CRC cells.
Figure 6: EGFR–SOS1 signals promote EGFR–Ras signalling and tumorigenesis of KRASMUT CRC cells.
Figure 7: RasGRP1 feedback restricts EGFR–SOS1–Ras signals.
Figure 8: RasGRP1 limits CRC cell proliferation and in vivo tumour growth.

Similar content being viewed by others

References

  1. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 10, 842–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  5. DiFiore, F., Sesboue, R., Michel, P., Sabourin, J. C. & Frebourg, T. Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer. Br. J. Cancer 103, 1765–1772 (2010).

    Article  CAS  Google Scholar 

  6. Normanno, N. et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat. Rev. Clin. Oncol. 6, 519–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Wheeler, D. L., Dunn, E. F. & Harari, P. M. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol. 7, 493–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ardito, C. M. et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 22, 304–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Navas, C. et al. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 22, 318–330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Aliaga, J. C., Deschenes, C., Beaulieu, J. F., Calvo, E. L. & Rivard, N. Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am. J. Physiol. 277, G631–G641 (1999).

    CAS  PubMed  Google Scholar 

  12. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Prasad, A. et al. Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proc. Natl Acad. Sci. USA 106, 528–533 (2009).

    Article  PubMed  Google Scholar 

  14. Das, J. et al. Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136, 337–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ksionda, O., Limnander, A. & Roose, J. Rasgrp ras guanine nucleotide exchange factors in cancer. Front. Biol. 8, 508–532 (2013).

    Article  CAS  Google Scholar 

  16. Kortum, R. L., Rouquette-Jazdanian, A. K. & Samelson, L. E. Ras and extracellular signal-regulated kinase signaling in thymocytes and T cells. Trends Immunol. 34, 259–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Dower, N. A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat. Immunol. 1, 317–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kortum, R. L. et al. Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc. Natl Acad. Sci. USA 108, 12407–12412 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Margarit, S. M. et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Boykevisch, S. et al. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr. Biol. 16, 2173–2179 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Roose, J. P., Mollenauer, M., Ho, M., Kurosaki, T. & Weiss, A. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol. Cell Biol. 27, 2732–2745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwig, J. S. et al. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. eLife 2, e00813 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oh-hora, M., Johmura, S., Hashimoto, A., Hikida, M. & Kurosaki, T. Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J. Exp. Med. 198, 1841–1851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  26. Reinhold, W. C. et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 72, 3499–3511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartzell, C. et al. Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Science Signaling 6, ra21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Biteau, B. & Jasper, H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138, 1045–1055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z. & Edgar, B. A. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8, 84–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Threadgill, D. W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269, 230–234 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 14, 401–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dieleman, L. A. et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107, 1643–1652 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Feng, Y. et al. Mutant KRAS promotes hyperplasia and alters differentiation in the colon epithelium but does not expand the presumptive stem cell pool. Gastroenterology 141, 1003–1013, e1001–1010 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bennecke, M. et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18, 135–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Daley, S. R. et al. Rasgrp1 mutation increases naive T-cell CD44 expression and drives mTOR-dependent accumulation of Helios + T cells and autoantibodies. eLife 2, e01020 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Noffsinger, A. E. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu. Rev. Pathol. 4, 343–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Porfiri, E. & McCormick, F. Regulation of epidermal growth factor receptor signaling by phosphorylation of the ras exchange factor hSOS1. J. Biol. Chem. 271, 5871–5877 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Kawasaki, H. et al. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc. Natl Acad. Sci. USA 95, 13278–13283 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeng, H. H., Taylor, L. J. & Bar-Sagi, D. Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nat. Commun. 3, 1168 (2012).

    Article  PubMed  Google Scholar 

  43. Downward, J., Parker, P. & Waterfield, M. D. Autophosphorylation sites on the epidermal growth factor receptor. Nature 311, 483–485 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. Topham, M. K. & Prescott, S. M. Diacylglycerol kinase zeta regulates Ras activation by a novel mechanism. J. Cell Biol. 152, 1135–1143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith, J. J. et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 138, 958–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Staub, E. et al. An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J. Mol. Med. 87, 633–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jorissen, R. N. et al. Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clin. Cancer Res. 15, 7642–7651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Budczies, J. et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS ONE 7, e51862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Taketo, M. M. & Edelmann, W. Mouse models of colon cancer. Gastroenterology 136, 780–798 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, D. et al. Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium. J. Clin. Invest. 119, 2702–2713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roberts, R. B. et al. Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc. Natl Acad. Sci. USA 99, 1521–1526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, D. et al. RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. Oncogene (2011).

  56. Yang, D. et al. RasGRP3 contributes to formation and maintenance of the prostate cancer phenotype. Cancer Res. 70, 7905–7917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oki-Idouchi, C. E. & Lorenzo, P. S. Transgenic overexpression of RasGRP1 in mouse epidermis results in spontaneous tumors of the skin. Cancer Res. 67, 276–280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmed, Z. et al. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. J. Cell Biol. 200, 493–504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, C. C. et al. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149, 1514–1524 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Z., Wang, M., Lazo, J. S. & Carr, B. I. Identification of epidermal growth factor receptor as a target of Cdc25A protein phosphatase. J. Biol. Chem. 277, 19470–19475 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. The Cancer Genome Atlas Network, Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  66. Nishiyama, Y., Kataoka, T., Yamato, K., Taguchi, T. & Yamaoka, K. Suppression of dextran sulfate sodium-induced colitis in mice by radon inhalation. Mediators Inflamm. 2012, 239617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhodes, D. R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Stone, T. Jacks and A. Ma for Rasgrp1-deficient, KRASLSLG12D and VillinCre mice, A. Karnezis and O. Yilmaz for helpful comments on the intestinal hyperplasia, L. Westerveld for technical support, and A. Balmain, M. McMahon, C. Bonnans, N. Duesbery and O. Klein for critically reading the manuscript. Our research was supported by the Sandler Program in Basic Science (start-up), NIH-NCI Physical Science Oncology Center grant U54CA143874, NIH grant 1P01AI091580-01, a Gabrielle’s Angel Foundation grant, a UCSF ACS grant, and a UCSF Research Allocation Program (RAP) pilot grant (all to J.P.R.), as well as by grants from the NCI (R01 CA057621 to Z.W. and K01CA118425 to K.M.H.), from the Jeannik M. Littlefield foundation (to R.W.), and from the Ministry of Science and Technology, Taiwan (104-2917-I-006-002 to C-Y.W.), and by the KWF (Dutch Cancer Society) (R.A.H.v.d.V., L.M.H.) and Saal van Zwanenberg Foundation (L.M.H.).

Author information

Authors and Affiliations

Authors

Contributions

P.D. performed most experiments. L.M.H., R.A.H.v.d.V. and E.L. assisted with soft-agar colony formation, biochemistry, and tissue culture. M.M., D.D. and R.W. provided RNA of patient specimens. C-Y.W., supported by Z.W., assisted with bioinformatics approaches. R.W., D.D. and K.M.H. provided insights and comments on the manuscript. P.D. and J.P.R. conceived the study, analysed data, and wrote the manuscript.

Corresponding authors

Correspondence to Philippe Depeille or Jeroen P. Roose.

Ethics declarations

Competing interests

P.D., R.W., and J.P.R. at UCSF filed a provisional patent (81906-937600-220200US) based on this work.

Integrated supplementary information

Supplementary Figure 3 Loss of Rasgrp1 alleles exacerbates the serrated dysplasia and hyperproliferation driven by KRasG12D.

(a) Higher magnifications of the distal colon of the indicated three mouse models depicted in Fig. 3b. Sections have been immunostained for Ki67 expression in brown. Scale bar indicates 100 μm. (b) Quantification of counted Ki67-positive cells in open crypts of the distal colon in mice from the indicated genotypes. Data are mean ± s.e.m. determined from n = 150 crypts that were pooled from three mice for each genotype. p < 0.0001 (One way Anova, Bonferroni’s multiple comparison test). (c) Aberrant serration in the distal colon in KRasG12DRasgrp1WT/- heterozygous mice. H&E staining of a representative section of the distal colon of KRasG12DRasgrp1WT/- mice. Scale bar indicates 100 μm.

Supplementary Figure 4 Increased branching of villi in the small intestine of KRasG12D mice when Rasgrp1 alleles are deleted.

(a) Large field, low magnification overviews of the small intestine (duodenum) sections stained by H&E from control WT-, KRasG12D-, KRasG12DRasgrp1WT/- -, and KRasG12DRasgrp1-/- - mice. Fields depicted here are distinct from the ones show in Fig. 3 to highlight the penetrance of the phenotypes. Scale bars 100 μm. (b) A selected field with branching villi in the duodenum of KRasG12DRasgrp1WT/- heterozygous mice at higher magnification. Scale bars indicate 100 μm. (c) Quantification of measurements of villus lengths (μm) in the duodenum from mice with the indicated genotype. Data are mean ± s.e.m. determined from n = 150 villi pooled from 3 mice for each specific specific genotype. NS = not significant, p < 0.0001 (One way Anova, Bonferroni’s multiple comparison test). (d) Representative images of ‘swiss rolls’ of entire intestinal tracts from stomach to rectum for the four indicated genotypes, sectioned transversally and stained with H&E. Scale bars represent 1 mm.

Supplementary Figure 5 Taqman expression analysis of all RasGRP family members in colorectal cancer cell lines.

(a) Real-time PCR of RasGRP1 mRNA level in seven selected colorectal (CRC) cell lines as shown Supplementary Table 1. WiDr was used as an arbitrary reference and set at 1.0. All data are shown as fold difference ± s.e.m. and compared to the value of 1.0 in WiDr and data is plotted from n = 6 independent RNA extractions for each cell type. (b) Same data sets for WiDr and SW403 as in Supplementary Fig. 3a but depicted on a different scale to highlight low expression of RasGRP1 in WiDr and nearly complete absence of RasGRP1 in SW403 CRC cells. WiDr was used as an arbitrary reference and set at 1.0. All data are shown as fold difference ± s.e.m. and compared to the value of 1.0 in WiDr and data is plotted from n = 6 independent RNA extractions for each cell type. (ce) RasGRP2- (c), RasGRP3- (d) and RasGRP4- (e) mRNA expression levels in the indicated seven CRC cell lines. WiDr was used as an arbitrary reference and set at 1.0. All data are shown as fold difference ± s.e.m. and compared to the value of 1.0 in WiDr and data is plotted from n = 6 independent RNA extractions for each cell type.

Supplementary Figure 6 ERK activation in HCT15 colorectal cancer cell lines.

(a,b) Analysis of ERK phosphorylation and total ERK protein levels in the human HCT15 colorectal cancer cell line stimulated with EGF. a,b are independent experiments confirming the observations in the experiment presented in Fig. 7c. Mean values of phospho-ERK for the three independent experiments with statistical analysis are provided in Fig. 7d. Unstimulated WT HCT15 cells are arbitrarily set at 1.0. Uncropped western blot images are shown in Supplementary Fig. 7.

Supplementary Figure 7 Correlation of RASGRP1 expression in CRC with clinical patient survival.

(a) The GSE12945 dataset comprises 185 RasGRP1 high and 38 RasGRP1 low samples from patients. High and low were defined using a cut-off finder as described. P = 0.0102, Log-rank (Mantel-Cox) test. (b) The GSE14333 dataset comprises 40 RasGRP1 high and 11 RasGRP1 low samples. P = 0.0235, Log-rank (Mantel-Cox) test.

Supplementary Figure 8 Analysis of ApcMin/+ :Rasgrp1-/- mice.

(a) Representative H&E images from colonic tumours from ApcMin/+ and ApcMin/+ :Rasgrp1-/- mice. Top panels (same as in Fig. 8) show the entire tumours and bottom panel show the same tumours at larger magnification. Top panels have a scale of 150 μm, whereas the bottom panels scale is 30 μm. (b) Representative colonic tumour sections from ApcMin/+ and ApcMin/+ :Rasgrp1-/- mice that were stained for BrdU (in brown, 2 h in vivo BrdU labeling). Scale 150 μm. Details within the traced squares are shown at higher magnification. (c) Representative tumour sections stained for cleaved caspase-3 (in brown) to reveal apoptotic cells in ApcMin/+ and ApcMin/+ :Rasgrp1-/- mice with an inset showing rare, positive cells at higher magnification. Arrows indicate the rare cleaved caspase-3 positive cells. Scale 150 μm. Details within the traced squares are shown at higher magnification.

Supplementary Table 1 RasGRP1 expression profile and KRAS mutational status in selected colorectal cancer cell lines.
Supplementary Table 2 Sensitivity of colorectal cancer cell lines to the Erlotinib EGFR inhibitor.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Depeille, P., Henricks, L., van de Ven, R. et al. RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol 17, 804–815 (2015). https://doi.org/10.1038/ncb3175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3175

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer