Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly

Abstract

Chromosome segregation requires the formation of K-fibres, microtubule bundles that attach sister kinetochores to spindle poles. Most K-fibre microtubules originate around the chromosomes through a non-centrosomal RanGTP-dependent pathway and become oriented with the plus ends attached to the kinetochore and the minus ends focused at the spindle poles. The capture and stabilization of microtubule plus ends at the kinetochore has been extensively studied but very little is known on how their minus-end dynamics are controlled. Here we show that MCRS1 is a RanGTP-regulated factor essential for non-centrosomal microtubule assembly. MCRS1 localizes to the minus ends of chromosomal microtubules and K-fibres, where it protects them from depolymerization. Our data reveal the existence of a mechanism that stabilizes the minus ends of chromosomal microtubules and K-fibres, and is essential for the assembly of a functional bipolar spindle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MCRS1 localizes to K-fibres and chromosomal microtubules.
Figure 2: MCRS1 is important for chromosomal microtubule assembly.
Figure 3: MCRS1 silencing induces spindle instability.
Figure 4: MCRS1 is involved in K-fibre minus-end stability.
Figure 5: Xenopus MCRS1 is an importin- β-binding protein included in a RanGTP-dependent microtubule-stabilizing complex.
Figure 6: MCRS1 counteracts MCAK activity in vitro and in vivo.

Similar content being viewed by others

References

  1. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).

    Article  CAS  Google Scholar 

  2. O’Connell, C. B. & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717–1722 (2007).

    Article  Google Scholar 

  3. Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat. Cell Biol. 4, 871–879 (2002).

    Article  CAS  Google Scholar 

  4. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    Article  CAS  Google Scholar 

  5. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

    Article  CAS  Google Scholar 

  6. Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309, 1373–1376 (2005).

    Article  CAS  Google Scholar 

  7. Kalab, P., Pralle, A., Isacoff, E. Y., Heald, R. & Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697–701 (2006).

    Article  CAS  Google Scholar 

  8. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    Article  CAS  Google Scholar 

  9. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat. Cell Biol. 3, 228–234 (2001).

    Article  CAS  Google Scholar 

  10. Wollman, R. et al. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005).

    Article  CAS  Google Scholar 

  11. McEwen, B. F., Heagle, A. B., Cassels, G. O., Buttle, K. F. & Rieder, C. L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).

    Article  CAS  Google Scholar 

  12. Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).

    Article  CAS  Google Scholar 

  13. Rizk, R. S. et al. MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol. Biol. Cell 20, 1639–1651 (2009).

    Article  CAS  Google Scholar 

  14. Kline-Smith, S. L., Khodjakov, A., Hergert, P. & Walczak, C. E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    Article  CAS  Google Scholar 

  15. Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore-microtubule interface. J. Cell Sci. 117, 5461–5477 (2004).

    Article  CAS  Google Scholar 

  16. Wordeman, L., Wagenbach, M. & von Dassow, G. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J. Cell Biol. 179, 869–879 (2007).

    Article  CAS  Google Scholar 

  17. Kops, G. J., Saurin, A. T. & Meraldi, P. Finding the middle ground: how kinetochores power chromosome congression. Cell Mol. Life Sci. 67, 2145–2161 (2010).

    Article  CAS  Google Scholar 

  18. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652 (1989).

    Article  CAS  Google Scholar 

  19. Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 (1996).

    Article  CAS  Google Scholar 

  20. Rogers, G. C., Rogers, S. L. & Sharp, D. J. Spindle microtubules in flux. J. Cell Sci. 118, 1105–1116 (2005).

    Article  CAS  Google Scholar 

  21. Ren, Y., Busch, R. K., Perlaky, L. & Busch, H. The 58−kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur. J. Biochem. 253, 734–742 (1998).

    Article  CAS  Google Scholar 

  22. Shimono, K., Shimono, Y., Shimokata, K., Ishiguro, N. & Takahashi, M. Microspherule protein 1, Mi-2β, and RET finger protein associate in the nucleolus and up-regulate ribosomal gene transcription. J. Biol. Chem. 280, 39436–39447 (2005).

    Article  CAS  Google Scholar 

  23. Hirohashi, Y. et al. p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene 25, 4937–4946 (2006).

    Article  CAS  Google Scholar 

  24. DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V. & Salmon, E. D. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol. 159, 549–555 (2002).

    Article  CAS  Google Scholar 

  25. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16, 536–541 (2006).

    Article  CAS  Google Scholar 

  26. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).

    Article  CAS  Google Scholar 

  27. Klebig, C., Korinth, D. & Meraldi, P. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol. 185, 841–858 (2009).

    Article  CAS  Google Scholar 

  28. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    Article  CAS  Google Scholar 

  29. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    Article  CAS  Google Scholar 

  30. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novelXenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  Google Scholar 

  31. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994).

    Article  CAS  Google Scholar 

  32. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987).

    Article  CAS  Google Scholar 

  33. Schatz, C. A. et al. Importin α-regulated nucleation of microtubules by TPX2. EMBO J. 22, 2060–2070 (2003).

    Article  CAS  Google Scholar 

  34. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  CAS  Google Scholar 

  35. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    Article  CAS  Google Scholar 

  36. Mahoney, N. M., Goshima, G., Douglass, A. D. & Vale, R. D. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr. Biol. 16, 564–569 (2006).

    Article  CAS  Google Scholar 

  37. Kalab, P. & Heald, R. The RanGTP gradient—a GPS for the mitotic spindle. J. Cell Sci. 121, 1577–1586 (2008).

    Article  CAS  Google Scholar 

  38. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I. kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  39. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  Google Scholar 

  40. Ems-McClung, S. C. & Walczak, C. E. Kinesin-13s in mitosis: key players in the spatial and temporal organization of spindle microtubules. Semin. Cell Dev. Biol. 21, 276–282 (2010).

    Article  CAS  Google Scholar 

  41. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    Article  CAS  Google Scholar 

  42. Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263–274 (2010).

    Article  CAS  Google Scholar 

  43. Brunet, S. et al. Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol. Biol. Cell 15, 5318–5328 (2004).

    Article  CAS  Google Scholar 

  44. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    Article  CAS  Google Scholar 

  45. Maresca, T. J. et al. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr. Biol. 19, 1210–1215 (2009).

    Article  CAS  Google Scholar 

  46. Sampath, S. C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    Article  CAS  Google Scholar 

  47. Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A. & Kapoor, T. M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003).

    Article  CAS  Google Scholar 

  48. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    Article  CAS  Google Scholar 

  49. McAinsh, A. D., Meraldi, P., Draviam, V. M., Toso, A. & Sorger, P. K. The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J. 25, 4033–4049 (2006).

    Article  CAS  Google Scholar 

  50. Amaro, A. C. et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat. Cell Biol. 12, 319–329 (2010).

    Article  CAS  Google Scholar 

  51. Sardon, T., Peset, I., Petrova, B. & Vernos, I. Dissecting the role of Aurora A during spindle assembly. EMBO J. 27, 2567–2579 (2008).

    Article  CAS  Google Scholar 

  52. Peset, I. et al. Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. J. Cell Biol. 170, 1057–1066 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gross for statistical analysis of data; M. Mendoza, J. Solon, T. Surrey and the Vernos laboratory’s members for helpful discussions and critical comments on the manuscript; P. Meraldi for the gift of the H2B–eGFP/α-tubulin–mRFP and H2B–RFP/PA-GFP–tubulin HeLa cell lines and anti-Mad1 antibodies, A. Khodjakov for the gift of the GFP–centrin-1 HeLa cell line and S. Rybina and E. Karsenti for the gift of purified MCAK and anti-MCAK antibodies. M. Sanz, N. Mallol, V. Beltran-Sastre and L. Ávila provided technical assistance. We thank the Advanced Light Microscopy Unit of the CRG for microscopy support. This work was funded by grants from the Spanish MEC and MICINN BFU2006-04694, BFU2009-10202 and CSD2006-00023.

Author information

Authors and Affiliations

Authors

Contributions

I.V. and S.M. designed the experiments. S.M. carried out all the experiments and analysed the data. I.V. and S.M. wrote the manuscript.

Corresponding author

Correspondence to Isabelle Vernos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 889 kb)

Supplementary Movie 1

Supplementary Information (AVI 304 kb)

Supplementary Movie 2

Supplementary Information (AVI 328 kb)

Supplementary Movie 3

Supplementary Information (AVI 206 kb)

Supplementary Movie 4

Supplementary Information (AVI 188 kb)

Supplementary Movie 5

Supplementary Information (AVI 1585 kb)

Supplementary Movie 6

Supplementary Information (AVI 277 kb)

Supplementary Movie 7

Supplementary Information (AVI 778 kb)

Supplementary Movie 8

Supplementary Information (AVI 1270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, S., Vernos, I. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat Cell Biol 13, 1406–1414 (2011). https://doi.org/10.1038/ncb2372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing