Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration

Abstract

Cell proliferation is a metabolically demanding process1,2. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth1,2. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis3, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. 4). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NF-κB counters reprogramming to aerobic glycolysis and promotes metabolic adaptation to nutrient starvation.
Figure 2: p53 mediates NF-κB-dependent protection against glucose starvation.
Figure 3: SCO2 mediates NF-κB-dependent protection against glucose-starvation-induced PCD.
Figure 4: RelA suppresses oncogenic transformation by regulating energy metabolism.
Figure 5: NF-κB promotes metabolic adaptation in cancer in vivo.

Similar content being viewed by others

References

  1. Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537–548 (2009).

    Article  CAS  Google Scholar 

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  3. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  Google Scholar 

  4. Leary, S. C. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 13, 1403–1416 (2010).

    Article  CAS  Google Scholar 

  5. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    Article  CAS  Google Scholar 

  6. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    Article  CAS  Google Scholar 

  7. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article  CAS  Google Scholar 

  8. Cuezva, J. M. et al. The tumor suppressor function of mitochondria: translation into the clinics. Biochim. Biophys. Acta 1792, 1145–1158 (2009).

    Article  CAS  Google Scholar 

  9. Wu, M. et al. Multiparameter metabolic analysis reveals a close linkbetween attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, 125–136 (2007).

    Article  CAS  Google Scholar 

  10. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  11. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  Google Scholar 

  12. Kirch, H. C. et al. Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-κB and Myc/Max. Oncogene 18, 2728–2738 (1999).

    Article  CAS  Google Scholar 

  13. Ide, T. et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 36, 379–392 (2009).

    Article  CAS  Google Scholar 

  14. Kawauchi, K., Araki, K., Tobiume, K. & Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 10, 611–618 (2008).

    Article  CAS  Google Scholar 

  15. Meylan, E. et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature 462, 104–107 (2009).

    Article  CAS  Google Scholar 

  16. Schwartzenberg-Bar-Yoseph, F., Armoni, M. & Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64, 2627–2633 (2004).

    Article  CAS  Google Scholar 

  17. Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).

    PubMed  CAS  Google Scholar 

  18. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).

    Article  CAS  Google Scholar 

  19. Vousden, K. H. Alternative fuel—another role for p53 in the regulation of metabolism. Proc. Natl Acad. Sci. USA 107, 7117–7118 (2010).

    Article  Google Scholar 

  20. Locasale, J. W., Cantley, L. C. & Vander Heiden, M. G. Cancer’s insatiable appetite. Nat. Biotechnol. 10, 916–917 (2009).

    Article  CAS  Google Scholar 

  21. Hanson, J. L., Hawke, N. A., Kashatus, D. & Baldwin, A. S. The nuclear factor-κB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res. 64, 7248–7255 (2004).

    Article  CAS  Google Scholar 

  22. Luo, J. L. et al. Inhibition of NF-κB in cancer cells converts inflammation-induced tumour growth mediated by TNFα to TRAIL-mediated tumour regression. Cancer Cell. 6, 297–305 (2004).

    Article  CAS  Google Scholar 

  23. Greten, F. R. et al. IKKβ links inflammation and tumourigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  Google Scholar 

  24. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  Google Scholar 

  25. Tergaonkar, V. & Perkins, N. D. p53 and NF-κB crosstalk: IKKα tips the balance. Mol. Cell 26, 158–159 (2007).

    Article  CAS  Google Scholar 

  26. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).

    Article  CAS  Google Scholar 

  27. Wang, J. et al. RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair. EMBO Rep. 10, 1272–1278 (2009).

    Article  CAS  Google Scholar 

  28. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003).

    Article  CAS  Google Scholar 

  29. Gapuzan, M-E. R. et al. Immortalized fibroblasts from NF-κB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor α after transformation by v-Ras. Oncogene 24, 6574–6583 (2005).

    Article  CAS  Google Scholar 

  30. He, G. et al. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell. 17, 286–297 (2010).

    Article  CAS  Google Scholar 

  31. Bassères, D. S., Ebbs, A., Levantini, E. & Baldwin, A. S. Requirement of the NF-κB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res. 71, 3537–3546 (2010).

    Article  CAS  Google Scholar 

  32. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumourigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  Google Scholar 

  33. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumourigenesis. Genes Dev. 25, 460–470 (2011).

    Article  CAS  Google Scholar 

  34. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  Google Scholar 

  35. Yang, H. et al. TNF- αinhibits asbestos-induced cytotoxicity via a NF-κB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc. Natl Acad. Sci. USA 103, 10397–10402 (2006).

    Article  CAS  Google Scholar 

  36. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Zong, W. X. et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282 (2004).

    Article  CAS  Google Scholar 

  38. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    Article  CAS  Google Scholar 

  39. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    Article  CAS  Google Scholar 

  40. Fullwood, M. J. et al. An oestrogen-receptor- α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pagano, F. Dazzi, P. Ashton-Rickardt, F. Marelli-Berg and G. Screaton for critical comments on the manuscript. We also thank K. Ryan (Beatson Institute for Cancer Research, Glasgow, UK) for the eGFP–LC3 plasmid; T. Lindsten and C. B. Thompson (University of Pennsylvania, Philadelphia, USA) for the immortalized Bax−/−/Bak−/− MEFs; D. Trono (Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) for the pWPT lentiviral vector; C. Chevtzoff and D. G. Hardie for assistance with the use of the Seahorse machine; and K. R. Chng for assistance with the analyses of the p53 promoter. C.M. was supported in part by a fellowship from AIRC (Italy). S.C.L. is supported by a scholarship from A*STAR (Singapore). M.M. is supported by a fellowship from the Pasteur Institute, Cenci Bolognetti Foundation (Italy). This work was supported by NIH grants R01 CA084040 and R01 CA098583 and Cancer Research UK grant C26587/A8839 to G.F., and NIH grant R01 CA123067 to N.S.C.

Author information

Authors and Affiliations

Authors

Contributions

C.M. first observed the glucose addiction exhibited by RelA-null cells. C.M. and S.C.L. carried out the further experimental characterization of this phenomenon and most of the analyses shown. E.A. and S.R. carried out the oxygen consumption assays. A.K.T. carried out the cell-cycle analysis and helped with in vivo studies. L.T. carried out the immunoblot analyses of apoptosis and autophagy and the in vitro metabolic analyses of CT-26 cells. E.D.S. and A.A.B. generated the early passage p 53−/− and RelA−/− MEFs, respectively, as well as the early passage wild-type controls from littermates. G.F., C.M. and S.C.L. wrote the manuscript and conceived the experiments. N.S.C. and V.T. contributed to the design of some of the experiments and made substantial critical revision to the manuscript. C.M., E.A., A.K.T., L.T. and M.M. carried out the experiments during revision of the manuscript. All authors discussed and revised the manuscript.

Corresponding author

Correspondence to Guido Franzoso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1815 kb)

Supplementary Table 1

Supplementary Information (XLS 22 kb)

Supplementary Table 2

Supplementary Information (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauro, C., Leow, S., Anso, E. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13, 1272–1279 (2011). https://doi.org/10.1038/ncb2324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2324

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer