Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The CDK4–pRB–E2F1 pathway controls insulin secretion

Abstract

CDK4–pRB–E2F1 cell-cycle regulators are robustly expressed in non-proliferating β cells, suggesting that besides the control of β-cell number the CDK4–pRB–E2F1 pathway has a role in β-cell function. We show here that E2F1 directly regulates expression of Kir6.2, which is a key component of the KATP channel involved in the regulation of glucose-induced insulin secretion. We demonstrate, through chromatin immunoprecipitation analysis from tissues, that Kir6.2 expression is regulated at the promoter level by the CDK4–pRB–E2F1 pathway. Consistently, inhibition of CDK4, or genetic inactivation of E2F1, results in decreased expression of Kir6.2, impaired insulin secretion and glucose intolerance in mice. Furthermore we show that rescue of Kir6.2 expression restores insulin secretion in E2f1−/− β cells. Finally, we demonstrate that CDK4 is activated by glucose through the insulin pathway, ultimately resulting in E2F1 activation and, consequently, increased expression of Kir6.2. In summary we provide evidence that the CDK4–pRB–E2F1 regulatory pathway is involved in glucose homeostasis, defining a new link between cell proliferation and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased secretagogue-stimulated insulin secretion in E2f1−/− mice.
Figure 2: Kir6.2, a component of the KATP channels that regulates insulin secretion, is a direct E2F1 target gene.
Figure 3: Glucose regulates CDK4 activity, pRB phosphorylation and E2F1 transcriptional activity both in vitro and in vivo.
Figure 4: Insulin regulates CDK4 activity, pRB phosphorylation and E2F1 transcriptional activity in vivo through an autocrine effect.
Figure 5: Glucose intolerance, decreased insulin secretion and KIR6.2 levels in C57Bl/6 treated with CDK4 inhibitor.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  Google Scholar 

  2. Fabbrizio, E. et al. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep. 3, 641–645 (2002).

    Article  CAS  Google Scholar 

  3. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  Google Scholar 

  4. Cam, H. et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16, 399–411 (2004).

    Article  CAS  Google Scholar 

  5. Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

    Article  CAS  Google Scholar 

  6. Fajas, L. et al. Impaired pancreatic growth, β cell mass, and β cell function in E2F1−/− mice. J. Clin. Invest. 113, 1288–1295 (2004).

    Article  CAS  Google Scholar 

  7. Miki, T., Nagashima, K. & Seino, S. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic β-cells. J. Mol. Endocrinol. 22, 113–123 (1999).

    Article  CAS  Google Scholar 

  8. Lorenz, E. et al. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel. Mol. Cell Biol. 18, 1652–1659 (1998).

    Article  CAS  Google Scholar 

  9. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  Google Scholar 

  10. Webb, G. C., Akbar, M. S., Zhao, C. & Steiner, D. F. Expression profiling of pancreatic β cells: glucose regulation of secretory and metabolic pathway genes. Proc. Natl Acad. Sci. USA 97, 5773–5778 (2000).

    Article  CAS  Google Scholar 

  11. Fajas, L. et al. Cyclin A is a mediator of p120E4F-dependent cell cycle arrest in G1. Mol. Cell Biol. 21, 2956–2966 (2001).

    Article  CAS  Google Scholar 

  12. Leibiger, I. B., Leibiger, B., Moede, T. & Berggren, P. O. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol. Cell 1, 933–938 (1998).

    Article  CAS  Google Scholar 

  13. Leibiger, B. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic β cells. Mol. Cell 7, 559–570 (2001).

    Article  CAS  Google Scholar 

  14. Remedi, M. S. et al. Diet-induced glucose intolerance in mice with decreased β-cell ATP-sensitive K+ channels. Diabetes 53, 3159–3167 (2004).

    Article  CAS  Google Scholar 

  15. Miki, T. et al. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 283, E1178–1184 (2002).

    Article  CAS  Google Scholar 

  16. Fatrai, S. et al. Akt induces β-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55, 318–325 (2006).

    Article  CAS  Google Scholar 

  17. Kushner, J. A. et al. Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol. Cell Biol. 25, 3752–3762 (2005).

    Article  CAS  Google Scholar 

  18. Georgia, S. & Bhushan, A. β cell replication is the primary mechanism for maintaining postnatal β cell mass. J. Clin. Invest. 114, 963–968 (2004).

    Article  CAS  Google Scholar 

  19. Rachdi, L. et al. Differential effects of p27 in regulation of β-cell mass during development, neonatal period, and adult life. Diabetes 55, 3520–3528 (2006).

    Article  CAS  Google Scholar 

  20. Uchida, T. et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nature Med. 11, 175–182 (2005).

    Article  CAS  Google Scholar 

  21. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  Google Scholar 

  22. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  Google Scholar 

  23. Otani, K. et al. Reduced β-cell mass and altered glucose sensing impair insulin-secretory function in βIRKO mice. Am. J. Physiol. Endocrinol. Metab. 286, E41–E49 (2004).

    Article  CAS  Google Scholar 

  24. Okada, T. et al. Insulin receptors in β cells are critical for islet compensatory growth response to insulin resistance. Proc. Natl Acad. Sci. USA 104, 8977–8982 (2007).

    Article  CAS  Google Scholar 

  25. Leibiger, I. B., Leibiger, B. & Berggren, P. O. Insulin feedback action on pancreatic β cell function. FEBS Lett. 532, 1–6 (2002).

    Article  CAS  Google Scholar 

  26. Sarruf, D. A. et al. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor γ. Mol. Cell Biol. 25, 9985–9995 (2005).

    Article  CAS  Google Scholar 

  27. Annicotte, J. S. et al. Peroxisome proliferator-activated receptor γ regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol. Cell Biol. 26, 7561–7574 (2006).

    Article  CAS  Google Scholar 

  28. Annicotte, J. S. et al. Pancreatic-duodenal homeoBox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol. Cell Biol. 23, 6713–6724 (2003).

    Article  CAS  Google Scholar 

  29. Abella, A. et al. Cdk4 promotes adipogenesis through PPARγ activation. Cell Metab. 2, 239–249 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.H. Kaestner (pGL3–Kir6.2–Luc), S. Seino and Y. Kurachi (pCDNA3–Kir6.2) for the gift of materials; I. Ait Arssa, M. Brissac, C. Clapé, D. Greuet, C. Henriquet and S. Hure for excellent technical help; L. Le Cam. Members of the Fajas lab are acknowledged for support and discussions. This work was supported by grants from Agence Nationale pour la Recherche (ANR physio2006), INSERM-Association Française des Diabétiques (PNR-Diabète), Association pour la Recherche contre le Cancer, and Fondation pour la Recherche Médicale. E.B. is supported by a grant form the Ministère de l'Enseignement Supérieur et de la Recherche, C.C. is supported by a grant from the Agence Nationale pour la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

J-S. A. and L.F designed the study; J-S. A., E.B., C.C., I.I., S.C., S.A. and J.T performed the experiments; S.D. and C.S. provided reagents and data; J-S. A. and L.F wrote the manuscript.

Corresponding author

Correspondence to Lluis Fajas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1063 kb)

Supplementary Information

Supplementary Table 1 (XLS 1587 kb)

Supplementary Information

Supplementary Table 2 (XLS 1031 kb)

Supplementary Information

Supplementary Table 3 (XLS 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annicotte, JS., Blanchet, E., Chavey, C. et al. The CDK4–pRB–E2F1 pathway controls insulin secretion. Nat Cell Biol 11, 1017–1023 (2009). https://doi.org/10.1038/ncb1915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing