Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt

Abstract

During development, elaborate patterns of cell differentiation and movement must occur in the correct locations and at the proper times. Developmental timing has been studied less than spatial pattern formation, and the mechanisms integrating the two are poorly understood. Border-cell migration in the Drosophila ovary occurs specifically at stage 9. Timing of the migration is regulated by the steroid hormone ecdysone, whereas spatial patterning of the migratory population requires localized activity of the JAK–STAT pathway. Ecdysone signalling is patterned spatially as well as temporally, although the mechanisms are not well understood. In stage 9 egg chambers, ecdysone signalling is highest in anterior follicle cells including the border cells. We identify the gene abrupt as a repressor of ecdysone signalling and border-cell migration. Abrupt protein is normally lost from border-cell nuclei during stage 9, in response to JAK–STAT activity. This contributes to the spatial pattern of the ecdysone response. Abrupt attenuates ecdysone signalling by means of a direct interaction with the basic helix–loop–helix (bHLH) domain of the P160 ecdysone receptor coactivator Taiman (Tai). Taken together, these findings provide a molecular mechanism by which spatial and temporal cues are integrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial patterns of ecdysone signalling in stage 8–9 egg chambers.
Figure 2: Normal and ectopic expression of ecdysone receptor isoforms.
Figure 3: Abrupt represses ecdysone signalling in Drosophila egg chambers.
Figure 4: Tai and Abrupt proteins interact.
Figure 5: Effects of Tai constructs on ecdysone-dependent transcription in vivo.
Figure 6: Rescue of tai mutant border cells by full length and truncated Tai proteins.
Figure 7: Precocious border-cell migration induced by co-expression of Tai(ΔB) and activated JAK.
Figure 8: Relationship between JAK–STAT, EcR and Abrupt.

Similar content being viewed by others

References

  1. Doe, C. Q. Chinmo and neuroblast temporal identity. Cell 127, 254–256 (2006).

    Article  CAS  Google Scholar 

  2. Zhu, S. et al. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127, 409–422 (2006).

    Article  CAS  Google Scholar 

  3. Kornberg, T. B. & Guha, A. Understanding morphogen gradients: a problem of dispersion and containment. Curr. Opin. Genet. Dev. 17, 264–271 (2007).

    Article  CAS  Google Scholar 

  4. Moss, E. G. Heterochronic genes and the nature of developmental time. Curr. Biol. 17, R425–R434 (2007).

    Article  CAS  Google Scholar 

  5. Frasch, M. A matter of timing: microRNA-controlled temporal identities in worms and flies. Genes Dev. 22, 1572–1576 (2008).

    Article  CAS  Google Scholar 

  6. Karp, X. & Ambros, V. Developmental biology. Encountering microRNAs in cell fate signaling. Science 310, 1288–1289 (2005).

    Article  CAS  Google Scholar 

  7. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676 (2003).

    CAS  PubMed  Google Scholar 

  8. Riddiford, L. M. in The Development of Drosophila melanogaster (eds Bate, M. & Arias, A. M.) 899–929 (Cold Spring Harbor Laboratory Press, 1993).

    Google Scholar 

  9. Banerjee, I. & Clayton, P. The genetic basis for the timing of human puberty. J. Neuroendocrinol. 19, 831–838 (2007).

    Article  CAS  Google Scholar 

  10. Carel, J. C. & Leger, J. Clinical practice. Precocious puberty. N. Engl. J. Med. 358, 2366–2377 (2008).

    Article  CAS  Google Scholar 

  11. Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature Rev. Cancer 5, 355–366 (2005).

    Article  CAS  Google Scholar 

  12. Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).

    Article  CAS  Google Scholar 

  13. Rorth, P. Initiating and guiding migration: lessons from border cells. Trends Cell Biol. 12, 325–331 (2002).

    Article  CAS  Google Scholar 

  14. Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000).

    Article  CAS  Google Scholar 

  15. Schwartz, M. B., Kelly, T. J., Woods, C. W. & Imberski, R. B. Ecdysteroid fluctuations in adult Drosophila melanogaster caused by elimination of pupal reserves and synthesis by early vitellogenic ovarian follicles. Insect Biochem. 19, 243–249 (1989).

    Article  CAS  Google Scholar 

  16. Buszczak, M. et al. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126, 4581–4589 (1999).

    CAS  PubMed  Google Scholar 

  17. Gaziova, I., Bonnette, P. C., Henrich, V. C. & Jindra, M. Cell-autonomous roles of the ecdysoneless gene in Drosophila development and oogenesis. Development 131, 2715–2725 (2004).

    Article  CAS  Google Scholar 

  18. Carney, G. E. & Bender, M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 154, 1203–1211 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001).

    Article  CAS  Google Scholar 

  20. Xi, R., McGregor, J. R. & Harrison, D. A. A gradient of JAK pathway activity patterns the anterior–posterior axis of the follicular epithelium. Dev. Cell 4, 167–177 (2003).

    Article  CAS  Google Scholar 

  21. Silver, D. L., Geisbrecht, E. R. & Montell, D. J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132, 3483–3492 (2005).

    Article  CAS  Google Scholar 

  22. Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. & Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell 14, 726–738 (2008).

    Article  CAS  Google Scholar 

  23. Kozlova, T. & Thummel, C. S. Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science 301, 1911–1914 (2003).

    Article  CAS  Google Scholar 

  24. Hackney, J. F., Pucci, C., Naes, E. & Dobens, L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn. 236, 1213–1226 (2007).

    Article  CAS  Google Scholar 

  25. Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271–284 (2003).

    Article  CAS  Google Scholar 

  26. Kozlova, T. & Thummel, C. S. Spatial patterns of ecdysteroid receptor activation during the onset of Drosophila metamorphosis. Development 129, 1739–1750 (2002).

    CAS  PubMed  Google Scholar 

  27. Rubenstein, E. C., Kelly, T. J., Schwartz, M. B. & Woods, C. W. In vitro synthesis and secretion of ecdysteroids by Drosophila melanogaster ovaries. J. Exp. Zool. 223, 305–308 (1982).

    Article  CAS  Google Scholar 

  28. Chavez, V. M. et al. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 127, 4115–4126 (2000).

    CAS  PubMed  Google Scholar 

  29. Freeman, M. R., Dobritsa, A., Gaines, P., Segraves, W. A. & Carlson, J. R. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development 126, 4591–4602 (1999).

    CAS  PubMed  Google Scholar 

  30. Petryk, A. et al. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl Acad. Sci. USA 100, 13773–13778 (2003).

    Article  CAS  Google Scholar 

  31. Warren, J. T. et al. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 99, 11043–11048 (2002).

    Article  CAS  Google Scholar 

  32. Warren, J. T. et al. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 34, 991–1010 (2004).

    Article  CAS  Google Scholar 

  33. Schubiger, M., Tomita, S., Sung, C., Robinow, S. & Truman, J. W. Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mech. Dev. 120, 909–918 (2003).

    Article  CAS  Google Scholar 

  34. Hu, S., Fambrough, D., Atashi, J. R., Goodman, C. S. & Crews, S. T. The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections. Genes Dev. 9, 2936–2948 (1995).

    Article  CAS  Google Scholar 

  35. Li, W., Wang, F., Menut, L. & Gao, F. B. BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. Neuron 43, 823–834 (2004).

    Article  CAS  Google Scholar 

  36. Sugimura, K., Satoh, D., Estes, P., Crews, S. & Uemura, T. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron 43, 809–822 (2004).

    Article  CAS  Google Scholar 

  37. Yan, J., Tsai, S. Y. & Tsai, M. J. SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacol. Sin. 27, 387–394 (2006).

    Article  Google Scholar 

  38. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  39. Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995).

    Article  CAS  Google Scholar 

  40. Tam, P. P. & Loebel, D. A. Gene function in mouse embryogenesis: get set for gastrulation. Nature Rev. Genet. 8, 368–381 (2007).

    Article  CAS  Google Scholar 

  41. Lander, A. D. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007).

    Article  CAS  Google Scholar 

  42. Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891–902 (2008).

    Article  CAS  Google Scholar 

  43. Sokol, N. S., Xu, P., Jan, Y. N. & Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591–1596 (2008).

    Article  CAS  Google Scholar 

  44. Caygill, E. E. & Johnston, L. A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943–950 (2008).

    Article  CAS  Google Scholar 

  45. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416 (1984).

    Article  CAS  Google Scholar 

  46. Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M. & Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev. Biol. 259, 9–18 (2003).

    Article  CAS  Google Scholar 

  47. Sempere, L. F., Dubrovsky, E. B., Dubrovskaya, V. A., Berger, E. M. & Ambros, V. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev. Biol. 244, 170–179 (2002).

    Article  CAS  Google Scholar 

  48. Bashirullah, A. et al. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol. 259, 1–8 (2003).

    Article  CAS  Google Scholar 

  49. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  50. Manseau, L. et al. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn. 209, 310–322 (1997).

    Article  CAS  Google Scholar 

  51. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).

    PubMed  Google Scholar 

  52. Yao, J. G. & Sun, Y. H. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J. 24, 2602–2612 (2005).

    Article  CAS  Google Scholar 

  53. Wang, X. et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell 10, 483–495 (2006).

    Article  CAS  Google Scholar 

  54. Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004).

    Article  CAS  Google Scholar 

  55. Tsai, C. C., Kao, H. Y., Yao, T. P., McKeown, M. & Evans, R. M. SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol. Cell 4, 175–186 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 GM46425 and R01 GM73164 to D.J.M.

Author information

Authors and Affiliations

Authors

Contributions

In Figs 3 and 8, A.J. and Y.C. contributed equally. A.J. also contributed Figs 1, 2, 4, 5, 6, 7 and Supplementary Information, Figs S1, S3, S4, S5 and S6. The EP screen was performed by Y.C., who also conducted the mutant analysis of Abrupt for Supplementary Information, Fig. S2. The nls-Tai(LXXLL–GFP) transgenic flies were constructed by J.B.. D.M. conceived of the project, participated in experimental design, discussions of results and interpretations, and wrote the manuscript.

Corresponding author

Correspondence to Denise Montell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, AC., Chang, YC., Bai, J. et al. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol 11, 569–579 (2009). https://doi.org/10.1038/ncb1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing