Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

α4 Integrins are Type I cAMP-dependent protein kinase-anchoring proteins

Abstract

A-kinase anchoring proteins (AKAPs) control the localization and substrate specificity of cAMP-dependent protein kinase (PKA), tetramers of regulatory (PKA-R) and catalytic (PKA-C) subunits, by binding to PKA-R subunits1. Most mammalian AKAPs bind Type II PKA through PKA-RII (ref. 2), whereas dual specificity AKAPs bind both PKA-RI and PKA-RII (ref. 3). Inhibition of PKA–AKAP interactions modulates PKA signalling2. Localized PKA activation in pseudopodia of migrating cells4 phosphorylates α4 integrins to provide spatial cues governing cell motility5. Here, we report that the α4 cytoplasmic domain is a Type I PKA-specific AKAP that is distinct from canonical AKAPs in two ways: the α4 interaction requires the PKA holoenzyme, and is insensitive to amphipathic peptides that disrupt most PKA–AKAP interactions. We exploited type-specific PKA anchoring peptides to create genetically encoded baits that sequester specific PKA isoforms to the mitochondria and found that mislocalization of Type I, but not Type II, PKA disrupts α4 phosphorylation and markedly inhibits the velocity and directional persistence of cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrin α4β1 associates with Type I PKA.
Figure 2: Integrin α4 interacts directly with Type I PKA.
Figure 3: PKA-RIα is required for phosphorylation of α4 and other substrates at the leading edge.
Figure 4: Delocalization of Type I PKA reduces α4 phosphorylation at the leading edge and inhibits α4β1-dependent cell migration.

Similar content being viewed by others

References

  1. Carr, D. W. et al. Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J. Biol. Chem. 14188–14192 (1991).

  2. Wong, W. & Scott, J. D. AKAP signalling complexes: focal points in space and time. Nature Rev. Mol. Cell Biol. 5, 959–970 (2004).

    Article  CAS  Google Scholar 

  3. Wang, L. et al. Cloning and mitochondrial localization of full-length D-AKAP2, a protein kinase A anchoring protein. Proc. Natl Acad. Sci. USA 98, 3220–3225 (2001).

    Article  CAS  Google Scholar 

  4. Howe, A. K., Baldor, L. C. & Hogan, B. P. Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration. Proc. Natl Acad. Sci. USA 102, 14320–14325 (2005).

    Article  CAS  Google Scholar 

  5. Goldfinger, L. E., Han, J., Kiosses, W. B., Howe, A. K. & Ginsberg, M. H. Spatial restriction of α4 integrin phosphorylation regulates lamellipodial stability and α4β1-dependent cell migration. J. Cell Biol. 162, 731–741 (2003).

    Article  CAS  Google Scholar 

  6. Liu, S. et al. Binding of paxillin to α4 integrins modifies integrin-dependent biological responses. Nature 402, 676–681 (1999).

    Article  CAS  Google Scholar 

  7. Amieux, P. S. et al. Increased basal cAMP-dependent protein kinase activity inhibits the formation of mesoderm-derived structures in the developing mouse embryo. J. Biol. Chem. 277, 27294–27304 (2002).

    Article  CAS  Google Scholar 

  8. Taylor, S. S., Buechler, J. A. & Yonemoto, W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 59, 971–1005 (1990).

    Article  CAS  Google Scholar 

  9. Burns-Hamuro, L. L. et al. Designing isoform-specific peptide disruptors of protein kinase A localization. Proc. Natl Acad. Sci. USA 100, 4072–4077 (2003).

    Article  CAS  Google Scholar 

  10. Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728 (2000).

    Article  CAS  Google Scholar 

  11. Mandeville, J. T., Ghosh, R. N. & Maxfield, F. R. Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils. Biophys. J. 68, 1207–1217 (1995).

    Article  CAS  Google Scholar 

  12. Nishiya, N., Kiosses, W. B., Han, J. & Ginsberg, M. H. An α4 integrin–paxillin–Arf–GAP complex restricts Rac activation to the leading edge of migrating cells. Nature Cell Biol. 7, 343–352 (2005).

    Article  CAS  Google Scholar 

  13. Cummings, D. E. et al. Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A. Nature 382, 622–626 (1996).

    Article  CAS  Google Scholar 

  14. Viste, K., Kopperud, R. K., Christensen, A. E. & Doskeland, S. O. Substrate enhances the sensitivity of type I protein kinase A to cAMP. J. Biol. Chem. 280, 13279–13284 (2005).

    Article  CAS  Google Scholar 

  15. Aandahl, E. M. et al. Inhibition of antigen-specific T cell proliferation and cytokine production by protein kinase A type I. J. Immunol. 169, 802–808 (2002).

    Article  CAS  Google Scholar 

  16. Carrasco, Y. R. & Batista, F. D. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J. 25, 889–899 (2006).

    Article  CAS  Google Scholar 

  17. Casey, M. et al. Mutations in the protein kinase A R1α regulatory subunit cause familial cardiac myxomas and Carney complex. J. Clin. Invest. 106, R31–R38 (2000).

    Article  CAS  Google Scholar 

  18. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nature Genet. 26, 89–92 (2000).

    Article  CAS  Google Scholar 

  19. von Andrian, U. H. & Engelhardt, B. α4 integrins as therapeutic targets in autoimmune disease. N. Engl. J. Med. 348, 68–72 (2003).

    Article  Google Scholar 

  20. Feral, C. C. et al. Blocking the α4 integrin–paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J. Clin. Invest 116, 715–723 (2006).

    Article  CAS  Google Scholar 

  21. Arroyo, A. G., Yang, J. T., Rayburn, H. & Hynes, R. O. Differential requirements for α4 integrins during fetal and adult hematopoiesis. Cell 85, 997–1008 (1996).

    Article  CAS  Google Scholar 

  22. Rose, D. M. et al. Paxillin binding to the alpha 4 integrin subunit stimulates LFA-1 (integrin αLα2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2. J. Immunol. 170, 5912–5918 (2003).

    Article  CAS  Google Scholar 

  23. Arias-Salgado, E. G. et al. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc. Natl Acad. Sci. USA 100, 13298–13302 (2003).

    Article  CAS  Google Scholar 

  24. Anand, G. S., Hughes, C. A., Jones, J. M., Taylor, S. S. & Komives, E. A. Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the R(I) α subunit of protein kinase A. J. Mol. Biol. 323, 377–386 (2002).

    Article  CAS  Google Scholar 

  25. Canaves, J. M., Leon, D. A. & Taylor, S. S. Consequences of cAMP-binding site mutations on the structural stability of the type I regulatory subunit of cAMP-dependent protein kinase. Biochemistry 39, 15022–15031 (2000).

    Article  CAS  Google Scholar 

  26. Kim, C., Xuong, N. H. & Taylor, S. S. Crystal structure of a complex between the catalytic and regulatory (RIα) subunits of PKA. Science 307, 690–696 (2005).

    Article  CAS  Google Scholar 

  27. Carlson, C. R., Ruppelt, A. & Tasken, K. A kinase anchoring protein (AKAP) interaction and dimerization of the RIα and RIβ regulatory subunits of protein kinase A in vivo by the yeast two hybrid system. J. Mol. Biol. 327, 609–618 (2003).

    Article  CAS  Google Scholar 

  28. Iyer, G. H., Moore, M. J. & Taylor, S. S. Consequences of lysine 72 mutation on the phosphorylation and activation state of cAMP-dependent kinase. J. Biol. Chem. 280, 8800–8807 (2005).

    Article  CAS  Google Scholar 

  29. Kammerer, S. et al. Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2: a disease susceptibility polymorphism. Proc. Natl Acad. Sci. USA 100, 4066–4071 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge L. Goldfinger and N. Nishiya for helpful discussions, and M. Deal for technical assistance. This work was supported by grants from the National Institutes of Health (NIH) to M.H.G., the Leukemia and Lymphoma Society to C.J.L., and Arthritis Foundation to J.H.

Author information

Authors and Affiliations

Authors

Contributions

C.J.L. performed all experiments with contributions from J.H., N.Y. and P.S.A. C.J.L., J.H. and M.H.G. planned and interpreted experimental data. Y.M., S.S.T., P.S.A. and G.S.K. provided critical reagents. C.J.L., M.H.G., S.S.T and G.S.K. wrote the paper.

Corresponding author

Correspondence to Mark H. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and S6 (PDF 560 kb)

Supplementary Information

Supplementary Movie 1 (AVI 3019 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C., Han, J., Yousefi, N. et al. α4 Integrins are Type I cAMP-dependent protein kinase-anchoring proteins. Nat Cell Biol 9, 415–421 (2007). https://doi.org/10.1038/ncb1561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1561

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing