Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The armadillo protein p0071 regulates Rho signalling during cytokinesis

Abstract

Cytokinesis requires the spatio-temporal coordination of cell-cycle control and cytoskeletal reorganization. Members of the Rho-family of GTPases are crucial regulators of this process and assembly of the contractile ring depends on local activation of Rho signalling1,2,3,4. Here, we show that the armadillo protein p0071, unlike its relative p120ctn, is localized at the midbody during cytokinesis and is essential for cell division. Both knockdown and overexpression of p0071 interfered with normal cell growth and survival due to cytokinesis defects with formation of multinucleated cells and induction of apoptosis. This failure of cytokinesis seemingly correlated with the deregulation of Rho activity in response to altered p0071 expression. The function of p0071 in regulating Rho activity occurred through an association of p0071 with RhoA, as well as the physical and functional interaction of p0071 with Ect2, the one Rho guanine-nucleotide exchange factor (GEF) essential for cytokinesis. These findings support an essential role for p0071 in spatially regulating restricted Rho signalling during cytokinesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p0071 associates with centrosomes, spindle poles and the midbody during the cell cycle.
Figure 2: Depletion of p0071 by shRNAs induces severe mitotic defects.
Figure 3: p0071 depletion induces downregulation of RhoA activity.
Figure 4: p0071 induces multinucleation after forced expression and interacts with RhoA.
Figure 5: p0071 associates with and functionally interacts with the Rho-GEF Ect2.

Similar content being viewed by others

References

  1. Yoshizaki, H. et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 162, 223–232 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Murthy, K. & Wadsworth, P. Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr. Biol. 15, 724–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Piekny, A., Werner, M. & Glotzer, M. Cytokinesis: welcome to the Rho zone. Trends Cell. Biol. 15, 651–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Anastasiadis, P. Z. & Reynolds, A. B. The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci. 113, 1319–1334 (2000).

    CAS  PubMed  Google Scholar 

  6. Hatzfeld, M. The p120 family of cell adhesion molecules. Eur. J. Cell Biol. 84, 205–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, A. & Jager, S. Plakophilins — hard work in the desmosome, recreation in the nucleus? Eur. J. Cell Biol. 84, 189–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Franz, C. M. & Ridley, A. J. p120 catenin associates with microtubules: inverse relationship between microtubule binding and Rho GTPase regulation. J. Biol. Chem. 279, 6588–6594 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Myster, S. H., Cavallo, R., Anderson, C. T., Fox, D. T. & Peifer, M. Drosophila p120 catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J. Cell Biol. 160, 433–449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skop, A. R., Liu, H., Yates, J., 3rd, Meyer, B. J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A. & Hardin, J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin–catenin function during epidermal morphogenesis. J. Cell Biol. 162, 15–22 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skop, A. R., Bergmann, D., Mohler, W. A. & White, J. G. Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr. Biol. 11, 735–746 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I. & Miki, T. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J. Cell Biol. 147, 921–928 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saito, S. et al. Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. J. Cell Biochem. 90, 819–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Saito, S. et al. Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. J. Biol. Chem. 279, 7169–7179 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kimura, K., Tsuji, T., Takada, Y., Miki, T. & Narumiya, S. Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J. Biol. Chem. 275, 17233–17236 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, J. E., Billadeau, D. D. & Chen, J. The tandem BRCT domains of Ect2 are required for both negative and positive regulation of Ect2 in cytokinesis. J. Biol. Chem. 280, 5733–5739 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Anastasiadis, P. Z. & Reynolds, A. B. Regulation of Rho GTPases by p120-catenin. Curr. Opin. Cell Biol. 13, 604–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds, A. B., Daniel, J. M., Mo, Y. Y., Wu, J. & Zhang, Z. The novel catenin p120cas binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 fibroblasts. Exp. Cell Res. 225, 328–337 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Grosheva, I., Shtutman, M., Elbaum, M. & Bershadsky, A. D. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell–cell contact formation and regulation of cell locomotion. J. Cell Sci. 114, 695–707 (2001).

    CAS  PubMed  Google Scholar 

  21. Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567–580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hatzfeld, M., Green, K. J. & Sauter, H. Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains. J. Cell Sci. 116, 1219–1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Yoshizaki, H. et al. Cell type-specific regulation of RhoA activity during cytokinesis. J. Biol. Chem. 279, 44756–44762 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Itoh, R. E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 22, 6582–6591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rackham, O. & Brown, C. M. Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J. 23, 3346–3355 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huttelmaier, S. et al. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    Article  PubMed  Google Scholar 

  27. Hatzfeld, M. & Nachtsheim, C. Cloning and characterization of a new armadillo family member, p0071, associated with the junctional plaque: evidence for a subfamily of closely related proteins. J. Cell Sci. 109, 2767–2778 (1996).

    CAS  PubMed  Google Scholar 

  28. Bostock, C. J., Prescott, D. M. & Kirkpatrick, J. B. An evaluation of the double thymidine block for synchronizing mammalian cells at the G1–S border. Exp. Cell Res. 68, 163–168 (1971).

    Article  CAS  PubMed  Google Scholar 

  29. Hu, C. D. & Kerppola, T. K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnol. 21, 539–545 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Achilles for expert technical assistance, and T. Magin and M. Osborn for critically reading the manuscript. This work was supported by grants from Deutsche Forschungsgemeinschaft (DFG; SFB 610 to M.H.) and the Bundesministerium für Bildung und Forschung (BMBF; Wilhelm Roux programme to M.H. and NBL3-Junior research group to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mechthild Hatzfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 ,S5 and S6 (PDF 892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, A., Keil, R., Götzl, O. et al. The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat Cell Biol 8, 1432–1440 (2006). https://doi.org/10.1038/ncb1504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing