Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo

Abstract

Protein–protein interactions contribute to the spatial and temporal resolution of many signal transduction cascades. Here, we discuss recent advances in our understanding of phosphatase-targeting subunits, kinase-anchoring proteins and the multiprotein signalling networks that they assemble.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type-1 phosphatase-targeting subunits.
Figure 2: PKC-interacting proteins.
Figure 3: A-kinase-anchoring proteins.

Similar content being viewed by others

References

  1. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  Google Scholar 

  2. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  3. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  4. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  5. Cohen, P. & Cohen, T. W. Protein phosphatases come of age. J. Biol. Chem. 264, 21435–21438 (1989).

    CAS  PubMed  Google Scholar 

  6. Virshup, D. M. Protein phosphatase 2A: a panoply of enzymes. Curr. Opin. Cell Biol. 12, 180–185 (2000).

    Article  CAS  Google Scholar 

  7. Cohen, P. T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem. Sci. 22, 245–251 (1997).

    Article  CAS  Google Scholar 

  8. Stralfors, P., Hiraga, A. & Cohen, P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur. J. Biochem. 149, 295–303 (1985).

    Article  CAS  Google Scholar 

  9. Hubbard, M. J., Dent, P., Smythe, C. & Cohen, P. Targeting of protein phosphatase 1 to the sarcoplasmic reticulum of rabbit skeletal muscle by a protein that is very similar or identical to the G subunit that directs the enzyme to glycogen. Eur. J. Biochem. 189, 243–249 (1990).

    Article  CAS  Google Scholar 

  10. Printen, J. A., Brady, M. J. & Saltiel, A. R. PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 275, 1475–1478 (1997).

    Article  CAS  Google Scholar 

  11. Egloff, M. P. et al. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16, 1876–1887 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  12. Johnson, D., Cohen, P., Chen, M. X., Chen, Y. H. & Cohen, P. T. W. Identification of the regions on the M110 subunit of protein phosphatase 1M that interact with the M21 subunit and with myosin. Eur. J. Biochem. 244, 931–939 (1997).

    Article  CAS  Google Scholar 

  13. Hartshorne, D. J. & Hirano, K. Interactions of protein phosphatase type 1, with a focus on myosin phosphatase. Mol. Cell. Biochem. 190, 79–84 (1999).

    Article  CAS  Google Scholar 

  14. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  Google Scholar 

  15. Surks, H. K. et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα. Science 286, 1583–1587 (1999).

    Article  CAS  Google Scholar 

  16. Kawano, Y. et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J. Cell Biol. 147, 1023–1038 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  17. Bollen, M. Combinatorial control of protein phosphatase-1. Trends Biochem. Sci. 26, 426–431 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  18. Allen, P. B., Kwon, Y. G., Nairn, A. C. & Greengard, P. Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit. J. Biol. Chem. 273, 4089–4095 (1998).

    Article  CAS  Google Scholar 

  19. Schillace, R. V., Voltz, J. W., Sim, A. T., Shenolikar, S. & Scott, J. D. Multiple interactions within the AKAP220 signaling complex contribute to protein phosphatase 1 regulation. J. Biol. Chem. 276, 12128–12134 (2001).

    Article  CAS  Google Scholar 

  20. Greengard, P., Allen, P. B. & Nairn, A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435–447 (1999).

    Article  CAS  Google Scholar 

  21. Smith, F. D. & Scott, J. D. Signaling complexes: junctions on the intracellular information super highway. Curr. Biol. 12, R32–R40 (2002).

    Article  CAS  Google Scholar 

  22. Westphal, R. S. et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285, 93–96 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  23. Feng, J. et al. Spinophilin regulates the formation and function of dendritic spines. Proc. Natl Acad. Sci. USA 97, 9287–9292 (2000).

    Article  CAS  Google Scholar 

  24. MacMillan, L. B. et al. Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J. Biol. Chem. 274, 35845–35854 (1999).

    Article  CAS  Google Scholar 

  25. Burnett, P. E. et al. Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. Proc. Natl Acad. Sci. USA 95, 8351–8356 (1998).

    Article  CAS  Google Scholar 

  26. Newton, A. C. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. 101, 2353–2364 (2001).

    Article  CAS  Google Scholar 

  27. Goodnight, J., Mischak, H., Kolch, W. & Mushinski, J. Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. J. Biol. Chem. 270, 9991–10001 (1995).

    Article  CAS  Google Scholar 

  28. Schechtman, D. & Mochly-Rosen, D. Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene 20, 6339–6347 (2001).

    Article  CAS  Google Scholar 

  29. Mochly-Rosen, D., Khaner, H. & Lopez, J. Identification of intracellular receptor proteins for activated protein kinase C. Proc. Natl Acad. Sci. USA 88, 3997–4000 (1991).

    Article  CAS  Google Scholar 

  30. Chang, B. Y., Conroy, K. B., Machleder, E. M. & Cartwright, C. A. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol. Cell. Biol. 18, 3245–3256 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  31. Chang, B. Y., Chiang, M. & Cartwright, C. A. The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J. Biol. Chem. 276, 20346–20356 (2001).

    Article  CAS  Google Scholar 

  32. Chapline, C. et al. Identification of a major protein kinase C-binding protein and substrate in rat embryo fibroblasts. J. Biol. Chem. 271, 6417–6422 (1996).

    Article  CAS  Google Scholar 

  33. Chapline, C., Ramsay, K., Klauck, T. & Jaken, S. Interaction cloning of PKC substrates. J. Biol. Chem. 268, 6858–6861 (1993).

    CAS  PubMed  Google Scholar 

  34. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  CAS  Google Scholar 

  35. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    Article  CAS  Google Scholar 

  36. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  37. Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  38. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  39. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  40. Itoh, M. et al. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154, 491–497 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  41. Rubin, C. S. A-kinase anchor proteins and the intracellular targeting of signals carried by cAMP. Biochim. Biophys. Acta 1224, 467–479 (1994).

    PubMed  Google Scholar 

  42. Colledge, M. & Scott, J. D. AKAPs: from structure to function. Trends Cell Biol. 9, 216–221 (1999).

    Article  CAS  Google Scholar 

  43. Feliciello, A., Gottesman, M. E. & Avvedimento, E. V. The biological functions of A-kinase anchor proteins. J. Mol. Biol. 308, 99–114 (2001).

    Article  CAS  Google Scholar 

  44. Carr, D. W. et al. Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J. Biol. Chem. 266, 14188–14192 (1991).

    CAS  PubMed  Google Scholar 

  45. Newlon, M. G. et al. A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J. 20, 1651–1662 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  46. Faux, M. C. & Scott, J. D. More on target with protein phosphorylation: conferring specificity by location. Trends Biochem. Sci. 21, 312–315 (1996).

    CAS  PubMed  Google Scholar 

  47. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–15002 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  48. Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711–1715 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  49. Coghlan, V. M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–112 (1995).

    Article  CAS  Google Scholar 

  50. Nauert, J. B., Klauck, T. M., Langeberg, L. K. & Scott, J. D. Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein. Curr. Biol. 7, 52–62 (1997).

    Article  CAS  Google Scholar 

  51. Schillace, R. V. & Scott, J. D. Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr. Biol. 9, 321–324 (1999).

    Article  CAS  Google Scholar 

  52. Steen, R. L., Martins, S. B., Tasken, K. & Collas, P. Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J. Cell Biol. 150, 1251–1262 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  53. Takahashi, M. et al. Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus. J. Biol. Chem. 274, 17267–17274 (1999).

    Article  CAS  Google Scholar 

  54. Takahashi, M., Mukai, H., Oishi, K., Isagawa, T. & Ono, Y. Association of immature hypo-phosphorylated protein kinase Cɛ with an anchoring protein CG-NAP. J. Biol. Chem. 275, 36585–36591 (2000).

    Google Scholar 

  55. Witczak, O. et al. Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. EMBO J. 18, 1858–1868 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  56. Diviani, D. & Scott, J. D. AKAP signaling complexes at the cytoskeleton. J. Cell Sci. 114, 1431–1437 (2001).

    CAS  PubMed  Google Scholar 

  57. Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J. 19, 4589–4600 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  58. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  59. Woodring, P. J. et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J. Cell Biol. 156, 879–892 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  60. Diviani, D., Soderling, J. & Scott, J. D. AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. J. Biol. Chem. 276, 44247–44257 (2001).

    Article  CAS  Google Scholar 

  61. Dodge, K. L. et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 20, 1921–1930 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  62. Oki, N., Takahashi, S. I., Hidaka, H. & Conti, M. Short term feedback regulation of cAMP in FRTL-5 thyroid cells. Role of PDE4D3 phosphodiesterase activation. J. Biol. Chem. 275, 10831–10837 (2000).

    Article  CAS  Google Scholar 

  63. Tasken, K. A. et al. Phosphodiesterase 4D and protein kinase A type II constitute a signaling unit in the centrosomal area. J. Biol. Chem. 276, 21999–22002 (2001).

    Article  CAS  Google Scholar 

  64. Niu, J. et al. Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. Curr. Biol. 11, 1686–1690 (2001).

    Article  CAS  Google Scholar 

  65. Shih, M., Lin, F., Scott, J. D., Wang, H. Y. & Malbon, C. C. Dynamic complexes of β2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J. Biol. Chem. 274, 1588–1595 (1999).

    Article  CAS  Google Scholar 

  66. Fraser, I. et al. Assembly of an AKAP/β2-adrenergic receptor signaling complex facilitates receptor phosphorylation and signaling. Curr. Biol. 10, 409–412 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  67. Davare, M. A. et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293, 98–101 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank T. Hunter, T. Pawson and members of the Scott lab for critical evaluation of this article, and D. Lin and T. Pawson for kindly providing the image used as the background to Fig. 2b. J.D.S. is supported in part by the National Institutes of Health, grant GM48231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauman, A., Scott, J. Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat Cell Biol 4, E203–E206 (2002). https://doi.org/10.1038/ncb0802-e203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0802-e203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing