Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PP2A-B55: substrates and regulators in the control of cellular functions

Abstract

PP2A is a major serine/threonine phosphatase class involved in the regulation of cell signaling through the removal of protein phosphorylation. This class of phosphatases is comprised of different heterotrimeric complexes displaying distinct substrate specificities. The present review will focus on one specific heterocomplex, the phosphatase PP2A-B55. Herein, we will report the direct substrates of this phosphatase identified to date, and its impact on different cell signaling cascades. We will additionally describe its negative regulation by its inhibitors Arpp19 and ENSA and their upstream kinase Greatwall. Finally, we will describe the essential molecular features defining PP2A-B55 substrate specificity that confer the correct temporal pattern of substrate dephosphorylation. The main objective of this review is to provide the reader with a unique source compiling all the knowledge of this particular holoenzyme that has evolved as a key enzyme for cell homeostasis and cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of PP2A holoenzymes and inhibitors.
Fig. 2: Schematic overview of the role of PP2A-B55 in the control of autophagy.
Fig. 3: Role of PP2A-B55 in metabolism.
Fig. 4: Schematic representation of the signaling pathways controlled by PP2A-B55 in S, G2, and M phases of the cell cycle.
Fig. 5: Molecular mechanisms controlling PP2A-B55 inhibitory activity of Arpp19.

Similar content being viewed by others

References

  1. Hunter T. Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.

    Article  CAS  PubMed  Google Scholar 

  2. Eichhorn PJA, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta. 2009;1795:1–15.

    CAS  PubMed  Google Scholar 

  3. Longin S, Zwaenepoel K, Louis JV, Dilworth S, Goris J, Janssens V. Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic subunit. J Biol Chem. 2007;282:26971–80.

    Article  CAS  PubMed  Google Scholar 

  4. Nasa I, Cressey LE, Kruse T, Hertz EPT, Gui J, Graves LM, et al. Quantitative kinase and phosphatase profiling reveal that CDK1 phosphorylates PP2Ac to promote mitotic entry. Sci Signal. 2020;13:eaba7823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho US, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature. 2007;445:53–7.

    Article  CAS  PubMed  Google Scholar 

  6. Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, et al. Role for the PP2A/B56δ phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell. 2006;127:759–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Letourneux C, Rocher G, Porteu F. B56‐containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX‐1 and ERK. EMBO J. 2006;25:727–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li M, Guo H, Damuni Z. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry. 1995;34:1988–96.

    Article  CAS  PubMed  Google Scholar 

  9. Reilly PT, Yu Y, Hamiche A, Wang L. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. BioEssays. 2014;36:1062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen S, Li B, Grundke-Iqbal I, Iqbal K. I PP2A 1 affects tau phosphorylation via association with the catalytic subunit of protein phosphatase 2A. J Biol Chem. 2008;283:10513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Okkeri J, Pavic K, Wang Z, Kauko O, Halonen T, et al. Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56. EMBO Rep. 2017;18:437–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Junttila MR, Puustinen P, Niemelä M, Ahola R, Arnold H, Böttzauw T, et al. CIP2A inhibits PP2A in human malignancies. Cell. 2007;130:51–62.

    Article  CAS  PubMed  Google Scholar 

  13. Porter IM, Schleicher K, Porter M, Swedlow JR. Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun. 2013;4:2677.

    Article  PubMed  Google Scholar 

  14. Mochida S, Maslen SL, Skehel M, Hunt T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science. 2010;330:1670–3.

    Article  CAS  PubMed  Google Scholar 

  15. Gharbi-Ayachi A, Labbe JC, Burgess A, Vigneron S, Strub JM, Brioudes E, et al. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science. 2010;330:1673–7.

    Article  CAS  PubMed  Google Scholar 

  16. Cundell MJ, Bastos RN, Zhang T, Holder J, Gruneberg U, Novak B, et al. The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation. Mol Cell. 2013;52:393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hached K, Goguet P, Charrasse S, Vigneron S, Sacristan MP, Lorca T, et al. ENSA and ARPP19 differentially control cell cycle progression and development. J Cell Biol. 2019;218:541–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Charrasse S, Gharbi-Ayachi A, Burgess A, Vera J, Hached K, Raynaud P, et al. Ensa controls S-phase length by modulating Treslin levels. Nat Commun. 2017;8:206.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ruvolo PP. The broken “Off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 2016;6:87–99.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem. 2008;283:1882–92.

    Article  CAS  PubMed  Google Scholar 

  21. Wong QW-L, Ching AK-K, Chan AW-H, Choy K-W, To K-F, Lai PB-S, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res. 2010;16:867–75.

    Article  CAS  PubMed  Google Scholar 

  22. Ruvolo PP, Qui YH, Coombes KR, Zhang N, Ruvolo VR, Borthakur G, et al. Low expression of PP2A regulatory subunit B55α is associated with T308 phosphorylation of AKT and shorter complete remission duration in acute myeloid leukemia patients. Leukemia. 2011;25:1711–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan J, Lee PL, Li Z, Jiang X, Lim YC, Hooi SC, et al. B55β-associated PP2A complex controls PDK1-directed Myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell. 2010;18:459–71.

    Article  CAS  PubMed  Google Scholar 

  24. Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol. 2003;13:1356–64.

    Article  CAS  PubMed  Google Scholar 

  25. Fritz A, Brayer KJ, McCormick N, Adams DG, Wadzinski BE, Vaillancourt RR. Phosphorylation of serine 526 is required for MEKK3 activity, and association with 14-3-3 blocks dephosphorylation. J Biol Chem. 2006;281:6236–45.

    Article  CAS  PubMed  Google Scholar 

  26. Silverstein AM, Barrow CA, Davis AJ, Mumby MC. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci USA. 2002;99:4221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wirth M, Joachim J, Tooze SA. Autophagosome formation—the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23:301–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wong P-M, Feng Y, Wang J, Shi R, Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015;6:8048.

    Article  CAS  PubMed  Google Scholar 

  29. Fujiwara N, Usui T, Ohama T, Sato K. Regulation of Beclin 1 protein phosphorylation and autophagy by protein phosphatase 2A (PP2A) and death-associated protein kinase 3 (DAPK3). J Biol Chem. 2016;291:10858–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei Y, An Z, Zou Z, Sumpter R, Su M, Zang X, et al. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. eLife. 2015;4:e05289.

    Article  PubMed Central  Google Scholar 

  31. Lipina C, Hundal HS. Is REDD1 a metabolic eminence grise?. Trends in Endocrinology & Metabolism. 2016;27:868–80.

    Article  CAS  Google Scholar 

  32. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54.

    Article  CAS  Google Scholar 

  34. Di Conza G, Trusso Cafarello S, Loroch S, Mennerich D, Deschoemaeker S, Di Matteo M, et al. The mTOR and PP2A pathways regulate PHD2 phosphorylation to fine-tune HIF1α levels and colorectal cancer cell survival under hypoxia. Cell Rep. 2017;18:1699–712.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Yang J, Liu Y, Chen X, Yu T, Jia J, et al. PR55α, a regulatory subunit of PP2A, specifically regulates pp2a-mediated β-catenin dephosphorylation. J Biol Chem. 2009;284:22649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eichhorn PJ, Creyghton MP, Wilhelmsen K, van Dam H, Bernards RA. RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC. PLoS Genet. 2007;3:e218.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-/Activin/Nodal signalling. Development. 2008;135:2927–37.

    Article  CAS  PubMed  Google Scholar 

  38. Ma S, Meng Z, Chen R, Guan K-L. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:7.1–7.28.

    Article  Google Scholar 

  39. Hansen CG, Moroishi T, Guan K-L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hein AL, Brandquist ND, Ouellette CY, Seshacharyulu P, Enke CA, Ouellette MM, et al. PR55α regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogenesis. 2019;8:63.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nishimura M, Uyeda K. Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J Biol Chem. 1995;270:26341–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA. 2003;100:5107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foster DA, Yellen P, Xu L, Saqcena M. Regulation of G1 cell cycle progression. Genes Cancer. 2010;1:1124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jayadeva G, Kurimchak A, Garriga J, Sotillo E, Davis AJ, Haines DS, et al. B55alpha PP2A holoenzymes modulate the phosphorylation status of the retinoblastoma-related protein p107 and its activation. J Biol Chem. 2010;285:29863–73.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kurimchak A, Haines DS, Garriga J, Wu S, De Luca F, Sweredoski MJ, et al. Activation of p107 by fibroblast growth factor, which is essential for chondrocyte cell cycle exit, is mediated by the protein phosphatase 2A/B55alpha holoenzyme. Mol Cell Biol. 2013;33:3330–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8:83–93.

    Article  CAS  PubMed  Google Scholar 

  47. Tan Y, Sun D, Jiang W, Klotz-Noack K, Vashisht AA, Wohlschlegel J, et al. PP2A-B55 antagonizes cyclin E1 proteolysis and promotes its dysregulation in cancer. Cancer Res. 2014;74:2006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Korver W, Roose J, Clevers H. The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res. 1997;25:1715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Park HJ, Wang Z, Costa RH, Tyner A, Lau LF, Raychaudhuri P. An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle. Oncogene. 2008;27:1696–704.

    Article  CAS  PubMed  Google Scholar 

  50. Alvarez-Fernández M, Halim VA, Aprelia M, Mohammed S, Medema RH. Protein phosphatase 2A (B55α) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation. J Biol Chem. 2011;286:33029–36.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci USA. 2010;107:12564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Voets E, Wolthuis RMF. MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle. 2010;9:3591–601.

    Article  CAS  PubMed  Google Scholar 

  53. Vigneron S, Brioudes E, Burgess A, Labbe JC, Lorca T, Castro A. Greatwall maintains mitosis through regulation of PP2A. EMBO J. 2009;28:2786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mochida S, Ikeo S, Gannon J, Hunt T. Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 2009;28:2777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cundell MJ, Hutter LH, Nunes Bastos R, Poser E, Holder J, Mohammed S, et al. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit. J Cell Biol. 2016;214:539–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alvarez-Fernandez M, Sanchez-Martinez R, Sanz-Castillo B, Gan PP, Sanz-Flores M, Trakala M, et al. Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals. Proc Natl Acad Sci USA. 2013;110:17374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McCloy RA, Parker BL, Rogers S, Chaudhuri R, Gayevskiy V, Hoffman NJ, et al. Global phosphoproteomic mapping of early mitotic exit in human cells identifies novel substrate dephosphorylation motifs. Mol Cell Proteom. 2015;14:2194–212.

    Article  CAS  Google Scholar 

  58. Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, et al. Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr Biol. 2003;13:2058–64.

    Article  CAS  PubMed  Google Scholar 

  59. Mollinari C, Kleman J-P, Jiang W, Schoehn G, Hunter T, Margolis RL. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol. 2002;157:1175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Diril MK, Bisteau X, Kitagawa M, Caldez MJ, Wee S, Gunaratne J, et al. Loss of the Greatwall kinase weakens the spindle assembly checkpoint. PLoS Genet. 2016;12:e1006310.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hein JB, Hertz EPT, Garvanska DH, Kruse T, Nilsson J. Distinct kinetics of serine and threonine dephosphorylation are essential for mitosis. Nat Cell Biol. 2017;19:1433–40.

    Article  CAS  PubMed  Google Scholar 

  62. Godfrey M, Touati SA, Kataria M, Jones A, Snijders AP, Uhlmann F. PP2A Cdc55 phosphatase imposes ordered cell-cycle phosphorylation by opposing threonine phosphorylation. Mol Cell. 2017;65:393–402.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalev P, Simicek M, Vazquez I, Munck S, Chen L, Soin T, et al. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 2012;72:6414–24.

    Article  CAS  PubMed  Google Scholar 

  64. Murphy AK, Fitzgerald M, Ro T, Kim JH, Rabinowitsch AI, Chowdhury D, et al. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery. J Cell Biol. 2014;206:493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang F, Zhu S, Fisher LA, Wang W, Oakley GG, Li C, et al. Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress. Sci Rep. 2018;8:2683.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reid MA, Wang W-I, Rosales KR, Welliver MX, Pan M, Kong M. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell. 2013;50:200–11.

    Article  CAS  PubMed  Google Scholar 

  67. Ruvolo PP, Ruvolo VR, Jacamo R, Burks JK, Zeng Z, Duvvuri SR, et al. The protein phosphatase 2A regulatory subunit B55α is a modulator of signaling and microRNA expression in acute myeloid leukemia cells. Biochim Biophys Acta. 2014;1843:1969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paroni G, Cernotta N, Dello Russo C, Gallinari P, Pallaoro M, Foti C, et al. PP2A regulates HDAC4 nuclear import. Mol Biol Cell. 2008;19:655–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Merrill RA, Slupe AM, Strack S. N-terminal phosphorylation of protein phosphatase 2A/Bβ2 regulates translocation to mitochondria, dynamin-related protein 1 dephosphorylation, and neuronal survival: regulated translocation of mitochondrial PP2A. FEBS J. 2013;280:662–73.

    Article  CAS  PubMed  Google Scholar 

  70. Ricotta D, Hansen J, Preiss C, Teichert D, Höning S. Characterization of a protein phosphatase 2A holoenzyme that dephosphorylates the clathrin adaptors AP-1 and AP-2. J Biol Chem. 2008;283:5510–7.

    Article  CAS  PubMed  Google Scholar 

  71. Xu Y, Chen Y, Zhang P, Jeffrey PD, Shi Y. Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated tau dephosphorylation. Mol Cell. 2008;31:873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJC. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell. 1999;10:1997–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heroes E, Lesage B, Görnemann J, Beullens M, Meervelt LV, Bollen M. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. 2013;280:584–95.

    Article  CAS  PubMed  Google Scholar 

  74. Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochemical Sci. 2010;35:450–8.

    Article  CAS  Google Scholar 

  75. Wu C-G, Chen H, Guo F, Yadav VK, Mcilwain SJ, Rowse M, et al. PP2A-B′ holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Disco. 2017;3:17027.

    Article  CAS  Google Scholar 

  76. Wang X, Bajaj R, Bollen M, Peti W, Page R. Expanding the PP2A interactome by defining a B56-specific SLiM. Structure. 2016;24:2174–81.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hertz EPT, Kruse T, Davey NE, López-Méndez B, Sigurðsson JO, Montoya G, et al. A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell. 2016;63:686–95.

    Article  CAS  PubMed  Google Scholar 

  78. Kruse T, Gnosa SP, Nasa I, Garvanska DH, Hein JB, Nguyen H, et al. Mechanisms of site‐specific dephosphorylation and kinase opposition imposed by PP2A regulatory subunits. EMBO J. 2020;39:e103695. https://doi.org/10.15252/embj.2019103695.

  79. Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell. 2006;127:341–53.

    Article  CAS  PubMed  Google Scholar 

  80. Castilho PV, Williams BC, Mochida S, Zhao Y, Goldberg ML. The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites. Mol Biol Cell. 2009;20:4777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mehsen H, Boudreau V, Garrido D, Bourouh M, Larouche M, Maddox PS, et al. PP2A-B55 promotes nuclear envelope reformation after mitosis in Drosophila. J Cell Biol. 2018;217:4106–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pomerening JR, Sontag ED, Ferrell JE. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol. 2003;5:346–51.

    Article  CAS  PubMed  Google Scholar 

  83. Sha W, Moore J, Chen K, Lassaletta AD, Yi C-S, Tyson JJ, et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci USA. 2003;100:975–80.

    Article  CAS  PubMed  Google Scholar 

  84. Rata S, Suarez Peredo Rodriguez MF, Joseph S, Peter N, Echegaray Iturra F, Yang F, et al. Two interlinked bistable switches govern mitotic control in mammalian cells. Curr Biol. 2018;28:3824.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vigneron S, Sundermann L, Labbé J-C, Pintard L, Radulescu O, Castro A, et al. Cyclin A-cdk1-dependent phosphorylation of bora is the triggering factor promoting mitotic entry. Dev Cell. 2018;45:637.e7.

    Article  CAS  PubMed  Google Scholar 

  86. Tavernier N, Thomas Y, Vigneron S, Maisonneuve P, Orlicky S, Mader P, et al. Bora phosphorylation substitutes in trans for T-loop phosphorylation in Aurora A to promote mitotic entry. Nat Commun. 2021;12:1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hutter LH, Rata S, Hochegger H, Novák B. Interlinked bistable mechanisms generate robust mitotic transitions. Cell Cycle. 2017;16:1885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mochida S, Rata S, Hino H, Nagai T, Novák B. Two bistable switches govern M phase entry. Curr Biol. 2016;26:3361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kamenz J, Gelens L, Ferrell JE. Bistable, biphasic regulation of PP2A-B55 accounts for the dynamics of mitotic substrate phosphorylation. Current Biology. 2021;31:794–808.

    Article  CAS  PubMed  Google Scholar 

  90. Hégarat N, Crncec A, Suarez Peredo Rodriguez MF, Echegaray Iturra F, Gu Y, Busby O, et al. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO J. 2020;39:e104419.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ma S, Vigneron S, Robert P, Strub JM, Cianferani S, Castro A, et al. Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1. J Cell Sci. 2016;129:1329–39.

    CAS  PubMed  Google Scholar 

  92. Heim A, Konietzny A, Mayer TU. Protein phosphatase 1 is essential for Greatwall inactivation at mitotic exit. EMBO Rep. 2015;16:1501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ren D, Fisher LA, Zhao J, Wang L, Williams BC, Goldberg ML, et al. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B. J Biol Chem. 2017;292:10026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu J, Fleming SL, Williams B, Williams EV, Li Z, Somma P, et al. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol. 2004;164:487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mochida S. Regulation of α-endosulfine, an inhibitor of protein phosphatase 2A, by multisite phosphorylation. FEBS J. 2014;281:1159–69.

    Article  CAS  PubMed  Google Scholar 

  96. Williams BC, Filter JJ, Blake-Hodek KA, Wadzinski BE, Fuda NJ, Shalloway D, et al. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers. eLife. 2014;3:e01695.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Labbé JC, Vigneron S, Méchali F, Robert P, Roque S, Genoud C, et al. The study of the determinants controlling Arpp19 phosphatase-inhibitory activity reveals an Arpp19/PP2A-B55 feedback loop. Nat Commun. 2021;12:3565.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Andrade EC, Musante V, Horiuchi A, Matsuzaki H, Brody AH, Wu T, et al. ARPP-16 is a striatal-enriched inhibitor of protein phosphatase 2A regulated by microtubule-associated serine/threonine kinase 3 (Mast 3 Kinase). J Neurosci. 2017;37:2709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dupré A, Daldello EM, Nairn AC, Jessus C, Haccard O. Phosphorylation of ARPP19 by protein kinase A prevents meiosis resumption in Xenopus oocytes. Nat Commun. 2014;5:3318. https://doi.org/10.1038/ncomms4318.

  100. Fujiki H, Suganuma M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res. 1993;61:143–94.

  101. Dilworth SM. Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer. 2002;2:951–6.

    Article  CAS  PubMed  Google Scholar 

  102. Skoczylas C, Fahrbach KM, Rundell K. Cellular targets of the SV40 small-t antigen in human cell transformation. Cell Cycle. 2004;3:606–10.

    Article  CAS  PubMed  Google Scholar 

  103. Wang SS. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 1998;282:284–7.

    Article  CAS  PubMed  Google Scholar 

  104. Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, et al. Low frequency of alterations of the a (PPP2R1A) and b (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene. 2000;19:1191–5.

  105. Ruediger R, Pham HT, Walter G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the Ab subunit gene. Oncogene. 2001;20:1892–9.

  106. Ruediger R, Pham HT, Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene. 2001;20:10–5.

    Article  CAS  PubMed  Google Scholar 

  107. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cheng Y, Liu W, Kim ST, Sun J, Lu L, Sun J, et al. Evaluation of PPP2R2A as a prostate cancer susceptibility gene: a comprehensive germline and somatic study. Cancer Genet. 2011;204:375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mosca L, Musto P, Todoerti K, Barbieri M, Agnelli L, Fabris S, et al. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Am J Hematol. 2013;88:16–23.

    Article  CAS  PubMed  Google Scholar 

  110. Kamada Y, Sakata-Yanagimoto M, Sanada M, Sato-Otsubo A, Enami T, Suzukawa K, et al. Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol. 2012;96:492–500.

    Article  CAS  PubMed  Google Scholar 

  111. Muggerud AA, Rønneberg JA, Wärnberg F, Botling J, Busato F, Jovanovic J, et al. Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res. 2010;12:1–10.

    Article  Google Scholar 

  112. Xie F, Xie G, Sun Q. Long noncoding RNA DLX6-AS1 promotes the progression in cervical cancer by targeting miR-16-5p/ARPP19 axis. Cancer Biother Radiopharm. 2020;35:129–36.

    CAS  PubMed  Google Scholar 

  113. Ye H, Jin Q, Wang X, Li Y. MicroRNA-802 inhibits cell proliferation and induces apoptosis in human laryngeal cancer by targeting cAMP-regulated phosphoprotein 19. Cancer Manag Res. 2020;12:419–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gong Y, Wu W, Zou X, Liu F, Wei T, Zhu J. MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19. Am J Cancer Res. 2018;8:1030–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lu M, Ding K, Zhang G, Yin M, Yao G, Tian H, et al. MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRgamma. Sci Rep. 2015;5:8735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mazhar S, Taylor SE, Sangodkar J, Narla G. Targeting PP2A in cancer: combination therapies. Biochim Biophys Acta. 2019;1866:51–63.

    Article  CAS  Google Scholar 

  117. Hoermann B, Kokot T, Helm D, Heinzlmeir S, Chojnacki JE, Schubert T, et al. Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nat Commun. 2020;11:3583.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Agence National de la Recherche (KiPARPP, ANR-18-CE13-0013 and REPLIGREAT, ANR-18-CE13-0018-01), La Ligue Nationale Contre le Cancer (Equipe Labellisée, EL2019 CASTRO), the Fondation ARC (PJA 20181207931), and the LABEX EpiGenMed (ANR-10-LABEX-12-01). PA is a Fondation pour la Recherche Medicale (FRM) fellow. SA and SR are LABEX EpiGenMed fellows.

Author information

Authors and Affiliations

Authors

Contributions

PA and SA contributed to the writing of PP2A-B55/Hippo-Yap and PP2A-/B55/cell metabolism sections. SV, FM, SR, JCL, and TL contributed to the writing of the Arpp19/mitotic control. AC performed the rest and coordinated the different sections.

Corresponding authors

Correspondence to Thierry Lorca or Anna Castro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, P., Awal, S., Vigneron, S. et al. PP2A-B55: substrates and regulators in the control of cellular functions. Oncogene 41, 1–14 (2022). https://doi.org/10.1038/s41388-021-02068-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02068-x

This article is cited by

Search

Quick links