Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Antibody VH Domains as Small Recognition Units

Abstract

To develop immunoglobulin based recognition units of minimum size, a human heavy chain variable domain (VH) was designed for selection of phage displayed VH. Non-specific binding of the VH through its interface for the light chain variable domain (VL) was prevented through three mutations (G44E, L45R and W47G) in this interface. These mutations were introduced to mimic camelid antibody heavy chains naturally devoid of light chain partners. The third hypervariable loop of the modified VH was then randomised to yield a repertoire of 2 × 108 independent clones, which was displayed on phage and selected through antigen binding. VH clones specific for hapten and protein antigens were isolated. Soluble VH was expressed with an isoleucine residue at position 47 to improve expression and stability compared to VH containing a glycine residue at this position, which however was preferable for phage selection. Affinities of soluble VH for hapten were between 100 nM and 400 nM. The VH domains were highly specific, stable and well expressed in Escherichia coli. These positive biophysical properties and their small size make them attractive for biotechnological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Winter, G. and Milstein, C. 1991. Man-made antibodies. Nature 349: 293–299.

    Article  CAS  Google Scholar 

  2. Lerner, R.A., Rang, A.S., Bain, J.D., Burton, D.R. and Barbas, C.F. 1992. Antibodies without immunization. Science 258: 1313–1314.

    Article  CAS  Google Scholar 

  3. Sandhu, J.S. 1992. Protein engineering of antibodies. Crit. Rev. Biotechnol. 12: 437–462.

    Article  CAS  Google Scholar 

  4. Colcher, D., Bird, R., Roselli, M., Hardman, K.D., Johnson, S., Pope, S., Dodd, S.W., Pantoliano, M.W., Milenic, D.E. and Schlom, J. 1990. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl. Cancer Inst. 82: 1191–1197.

    Article  CAS  Google Scholar 

  5. Yokota, T, Milenic, D.E., Whitlow, M. and Schlom, J. 1992. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52: 3402–3408.

    CAS  PubMed  Google Scholar 

  6. Nedelman, M.A., Shealy, D.J., Boulin, R., Brunt, E., Sfiasholtz, J.I., Alien, I.E., McCartney, J.E., Warren, F.D., Oppermann, H., Pang, R.H.L., Berger, H.J. and Weisman, H.F. 1993. Rapid infarct imaging with a technetium-99m-labeled antimyosin recombinant single-chain Fv: Evaluation in a canine model of acute myocardial infarction. J. Nucl. Med. 34: 234–241.

    CAS  PubMed  Google Scholar 

  7. Berry, M.J., Davies, J., Smith, C.G. and Smith, I. 1991. Immobilization of Fv antibody fragments on porous silica and their utility in affinity chromatography. J. Chromatogr. 587: 161–169.

    Article  CAS  Google Scholar 

  8. Riechmann, L., Foote, J. and Winter, G. 1988. Expression of an antibody Fv fragment in myeloma cells. J. Mol. Biol. 203: 825–828.

    Article  CAS  Google Scholar 

  9. Skerra, A. and Pliickthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041.

    Article  CAS  Google Scholar 

  10. Huston, J.S., Levinsin, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haber, E., Crea, R. and Oppermann, H. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  Google Scholar 

  11. Harber, E. and Richards, F.F. 1966. The specificity of antigenic recognition of antibody heavy chain. Proc. R. Soc. London Sen B. 166: 176–187.

    Google Scholar 

  12. Jaton, J.-C., Klinman, N.R., Givol, D. and Sela, M. 1968. Recovery of antibody activity upon reoxidation of completely reduced polyalanyl heavy chain and its Fd fragment derived from anti-2,4-dinitrophenyl antibody. Biochemistry 7: 4185–4195.

    Article  CAS  Google Scholar 

  13. Rockey, J.H. 1967. Equine antihapten antibody. The subunits and fragments of anti-β-lactoside antibody. J. Exp. Med. 125: 249–275.

    Article  CAS  Google Scholar 

  14. Utsumi, S. and Karush, F. 1964. The subunits of purified rabbit antibody. Biochemistry 3: 1329–1338.

    Article  CAS  Google Scholar 

  15. Spiegelberg, H.L. and Weigle, W.O. 1966. The in vivo formation and fate of antigen-antibody complexes formed by fragments and polypeptide chains of rabbit γC-antibodies. J. Exp. Med. 123: 999–1012.

    Article  CAS  Google Scholar 

  16. Ward, E.S., GUssow, D., Griffiths, A.D., Jones, P.T. and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341: 544–546.

    Article  CAS  Google Scholar 

  17. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Bajyana Songa, E., Bendahman, N. and Hamers, R. 1993. Naturally occurring antibodies devoid of light chains. Nature 363: 446–448.

    Article  CAS  Google Scholar 

  18. Hoogenboom, H.R. and Winter, G. 1992. By-passing immunization. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro . J. Mol. Biol. 227: 381–388.

    Google Scholar 

  19. Davies, J. and Riechmann, L. 1994. ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEES Lett. 339: 285–290.

    Article  CAS  Google Scholar 

  20. Sasso, E.H., Silvermann, G.J. and Mannik, M. 1991. Human IgA and IgG F(ab)′2 that bind to staphylococcal protein A belong to the VHIII subgroup. J. Immunol. 147: 1877–1883.

    CAS  PubMed  Google Scholar 

  21. Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. and Winter, G. 1992. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. Mol. Biol. 227: 776–798.

    Article  CAS  Google Scholar 

  22. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Konterman, R.E., Jones, P.T., Low, N.M., Allison, T.J., Prospero, T.D., Hoogenboom, H., Nissim, A., Cox, J.P.L., Harrison, J.L., Zaccolo, M., Gheradi, E. and Winter, G. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  CAS  Google Scholar 

  23. Chothia, C., Novotny, J., Bruccoleri, R. and Karplus, M. 1985. Domain association in inimunQglobulin molecules. The packing of variable domains. J. Mol. Biol. 186: 651–663.

    Article  CAS  Google Scholar 

  24. Chothia, C. and Lesk, A. 1987. Canonical structures of the hypervariable regions of immunoglobulins. J. Mol. Biol. 196: 904–917.

    Article  Google Scholar 

  25. Barbas, C.F., Bain, J.D., Hoekstra, D.M. and Lerner, R.A. 1992. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89: 4457–461.

    Article  CAS  Google Scholar 

  26. Barbas, C.F., Amberg, W., Simoncsits, A., Jones, T.M. and Lerner, R.A. 1993. Selection of human anti-hapten antibodies from Semisynthetic libraries. Gene 137: 57–62.

    Article  CAS  Google Scholar 

  27. Heaphy, S., Dingwall, C., Ernberg, I., Gait, M.J., Green, S.M., Karn, J., Lowe, A.D., Singh, M. and Skinner, M.A. 1990. H1V-1 regulator of virion expression (rev) protein binds to an RNA stem-loop structure located within the rev response element region. Cell 60: 685–693.

    Article  CAS  Google Scholar 

  28. Mann, D.A., Mikaelian, I., Zemmel, R.W., Green, S.M., Lowe, A.D., Kimura, T., Singh, M., Butler, P.J.G., Gait, M.J. and Karn, J. 1994. A molecular rheostat. Co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression. J. Mol. Biol. 241: 193–207.

    Article  CAS  Google Scholar 

  29. Biocca, S., Pierandrei-Armaldi, P., Camioni, N. and Cattaneo, A. 1994. Intra-cellular immunization with cytosolic recombinant antibodies. Bio/Technology 12: 396–399.

    Article  CAS  Google Scholar 

  30. Nissim, A., Hoogenboom, H.R., Tomlinson, I.A., Flynn, G., Midgley, C., Lane, D. and Winter, G. 1994. Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents. EMBO J. 13: 692–698.

    Article  CAS  Google Scholar 

  31. Pack, P. and Pliickthun, A. 1991. Miniantibodies: Use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry 31: 1579–1584.

    Article  Google Scholar 

  32. Riechmann, L., Weill, M. and Cavanagh, J. 1992. Improving the antigen affinity of an antibody Fv-fragment by protein design. J. Mol. Biol. 224: 913–918.

    Article  CAS  Google Scholar 

  33. Riechmann, L. and Weill, M. 1993. Phage display and selection of a site-directed randomized single-chain antibody Fv fragment for its affinity improvement. Biochemistry 32: 8848–8855.

    Article  CAS  Google Scholar 

  34. Wu, T.T., Johnson, G. and Kabat, E.A. 1993. Length distribution of CDRH3 in antibodies. Proteins: Structure, Function and Genetics 16: 1–7.

    Article  CAS  Google Scholar 

  35. Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127–6145.

    Article  CAS  Google Scholar 

  36. Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P. and Winter, G. 1991. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19: 4133–4137.

    Article  CAS  Google Scholar 

  37. Schmidt, T.G.M. and Skerra, A. 1993. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Engineering 6: 109–122.

    Article  CAS  Google Scholar 

  38. Munro, S. and Pelham, H.R.B. 1986. An Hsp-like protein in the ERI identity with the 78kd glucose regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.

    Article  CAS  Google Scholar 

  39. Brownstone, A., Mitchison, N.A. and Pitt-Rivers, R. 1966. Chemical and sero-logical studies with an iodine-containing synthetic immunological determinant 4-hydroxy-3-iodo-5-nitrophenyl acetic acid (NIP) and related compunds. Immunology 10: 465–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Foote, J. and Milstein, C. 1991. Kinetic maturation of an immune response. Nature 352: 530–532.

    Article  CAS  Google Scholar 

  41. McManus, S. and Riechmann, L. 1991. Use of 2D NMR, protein engineering and molecular modeling to study the hapten-binding site of an antibody Fv-fragment against 2-phenyloxazolone. Biochemistry 30: 5851–5857.

    Article  CAS  Google Scholar 

  42. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. and Foeller, C. 1991. Sequences of immunological interest, 5th ed., US Department of Health and Human Services, Washington, D.C.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Riechmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, J., Riechmann, L. Antibody VH Domains as Small Recognition Units. Nat Biotechnol 13, 475–479 (1995). https://doi.org/10.1038/nbt0595-475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0595-475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing