Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy

Abstract

One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic ‘Dark Ages’, when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1, 2, 3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation4,5,6. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons7,8,9. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies10,11. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The O32R23 diagram for star-forming galaxies.
Figure 2: Near-ultraviolet image of J0925+1403 from the HST.
Figure 3: The double-peaked Lyα emission line in the COS spectrum of J0925+1403.
Figure 4: The COS spectrum of J0925+1403.

Similar content being viewed by others

References

  1. Robertson, B. E. et al. New constraints on cosmic reionisation from the 2012 Hubble Ultra Deep Field Campaign. Astrophys. J. 768, 71 (2013)

    ADS  Google Scholar 

  2. Steidel, C. C., Pettini, M. & Adelberger, K. L. Lyman-continuum emission from galaxies at z ≥ 3.4. Astrophys. J. 546, 665–671 (2001)

    ADS  CAS  Google Scholar 

  3. Iwata, I. et al. Detections of Lyman continuum from star-forming galaxies at z ~ 3 through Subaru/Suprime-Cam narrow-band imaging. Astrophys. J. 692, 1287–1293 (2009)

    ADS  CAS  Google Scholar 

  4. Mitra, S., Ferrara, A. & Choudhury, T. R. The escape fraction of ionising photons from high-redshift galaxies from data-constrained reionisation models. Mon. Not. R. Astron. Soc. 428, L1–L5 (2013)

    ADS  Google Scholar 

  5. Yajima, H., Choi, J.-H. & Nagamine, K. Escape fraction of ionising photons from high-redshift galaxies in cosmological SPH simulations. Mon. Not. R. Astron. Soc. 412, 411–422 (2011)

    ADS  Google Scholar 

  6. Wise, J. H. & Cen, R. Ionising photon escape fractions from high-redshift dwarf galaxies. Astrophys. J. 693, 984–999 (2009)

    ADS  CAS  Google Scholar 

  7. Leitherer, C., Ferguson, H. C., Heckman, T. M. & Lowenthal, J. D. The Lyman continuum in starburst galaxies observed with the Hopkins Ultraviolet Telescope. Astrophys. J. 454, L19–L22 (1995)

    ADS  Google Scholar 

  8. Deharveng, J.-M. et al. Constraints on the Lyman continuum radiation from galaxies: first results with FUSE on Mrk 54. Astron. Astrophys. 375, 805–813 (2001)

    ADS  CAS  Google Scholar 

  9. Grimes, J. P. et al. Observations of starburst galaxies with Far-Ultraviolet Spectrographic Explorer: galactic feedback in the Local Universe. Astrophys. J. Suppl. Ser. 181, 272–320 (2009)

    ADS  CAS  Google Scholar 

  10. Leitet, E., Bergvall, N., Hayes, M., Linné, S. & Zackrisson, E. Escape of Lyman continuum radiation from local galaxies. Detection of leakage from the young starburst Tol 1247–232. Astron. Astrophys. 553, A106 (2013)

    ADS  Google Scholar 

  11. Borthakur, S., Heckman, T. M., Leitherer, C. & Overzier, R. A. A local clue to the reionisation of the universe. Science 346, 216–219 (2014)

    ADS  CAS  PubMed  Google Scholar 

  12. Cardamone, C. et al. Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. Mon. Not. R. Astron. Soc. 399, 1191–1205 (2009)

    ADS  CAS  Google Scholar 

  13. Izotov, Y. I., Guseva, N. G. & Thuan, T. X. Green Pea galaxies and cohorts: luminous compact emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 728, 161 (2011)

    ADS  Google Scholar 

  14. Jaskot, A. E. & Oey, M. S. The origin and optical depth of ionising radiation in the “Green Pea” galaxies. Astrophys. J. 766, 91 (2013)

    ADS  Google Scholar 

  15. Stasińska, G., Izotov, Y., Morisset, C. & Guseva, N. Excitation properties of galaxies with the highest [O III]/[O II] ratios. No evidence for massive escape of ionising photons. Astron. Astrophys. 576, A83 (2015)

    ADS  Google Scholar 

  16. Nakajima, K. & Ouchi, M. Ionisation state of inter-stellar medium in galaxies: evolution, SFR–M*–Z dependence, and ionising photon escape. Mon. Not. R. Astron. Soc. 442, 900–916 (2014)

    ADS  CAS  Google Scholar 

  17. Jaskot, A. E. & Oey, M. S. Linking Lyalpha and low-ionisation transitions at low optical depth. Astrophys. J. 791, L19 (2014)

    ADS  Google Scholar 

  18. Henry, A., Scarlata, C., Martin, C. S. & Erb, D. Lyα emission from Green Peas: the role of circumgalactic gas density, covering, and kinematics. Astrophys. J. 809, 19 (2015)

    ADS  Google Scholar 

  19. Ade, P. A. et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

    Google Scholar 

  20. Verhamme, A., Orlitová, I., Schaerer, D. & Hayes, M. Using Lyman-α to detect galaxies that leak Lyman continuum. Astron. Astrophys. 578, A7 (2015)

    ADS  Google Scholar 

  21. Hummer, D. G. & Storey, P. J. Recombination-line intensities for hydrogenic ions – I. Case B calculations for H I and He II. Mon. Not. R. Astron. Soc. 224, 801–820 (1987)

    ADS  CAS  Google Scholar 

  22. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    ADS  CAS  Google Scholar 

  23. Mathis, J. S. Interstellar dust and extinction. Annu. Rev. Astron. Astrophys. 28, 37–70 (1990)

    ADS  CAS  Google Scholar 

  24. Wide-field Infrared Survey Explorer (WISE) and NEOWISE. http://irsa.ipac.caltech.edu/Missions/wise.html (2013)

  25. Izotov, Y. I. & Thuan, T. X. Near-infrared spectroscopy of five blue compact dwarf galaxies: II Zw 40, Mrk 71, Mrk 930, Mrk 996, and SBS 0335–052E. Astrophys. J. 734, 82 (2011)

    ADS  Google Scholar 

  26. Izotov, Y. I., Guseva, N. G., Fricke, K. J., Krügel, E. & Henkel, C. Dust emission in star-forming dwarf galaxies: general properties and the nature of the submm excess. Astron. Astrophys. 570, A97 (2014)

    ADS  Google Scholar 

  27. Izotov, Y. I., Guseva, N. G., Fricke, K. J. & Henkel, C. Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey. Astron. Astrophys. 561, A33 (2014)

    ADS  Google Scholar 

  28. Izotov, Y. I., Guseva, N. G., Fricke, K. J. & Henkel, C. On the universality of luminosity-metallicity and mass-metallicity relations for compact star-forming galaxies at redshifts 0 < z < 3. Mon. Not. R. Astron. Soc. 451, 2251–2262 (2015)

    ADS  CAS  Google Scholar 

  29. Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pacif. 93, 5–19 (1981)

    ADS  CAS  Google Scholar 

  30. Kauffmann, G. et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 341, 33–53 (2003)

    ADS  Google Scholar 

  31. Worseck, G. et al. The end of helium reionization at z 2.7 inferred from cosmic variance in HST/COS He II Lyα absorption spectra. Astrophys. J. 733, L24 (2011)

    ADS  Google Scholar 

  32. Syphers, D. et al. HST/COS observations of thirteen new He II quasars. Astron. J. 143, 100 (2012)

    ADS  Google Scholar 

  33. Murthy, J. GALEX diffuse observations of the sky: the data. Astrophys. J. Suppl. Ser. 213, 32 (2014)

    ADS  Google Scholar 

  34. Izotov, Y. I., Thuan, T. X. & Lipovetsky, V. A. The primordial helium abundance from a new sample of metal-deficient blue compact galaxies. Astrophys. J. 435, 647–667 (1994)

    ADS  CAS  Google Scholar 

  35. Izotov, Y. I., Stasińska, G., Meynet, G., Guseva, N. G. & Thuan, T. X. The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey. Astron. Astrophys. 448, 955–970 (2006)

    ADS  CAS  Google Scholar 

  36. Guseva, N. G., Izotov, Y. I. & Thuan, T. X. Balmer and Paschen jump temperature determinations in low-metallicity emission-line galaxies. Astrophys. J. 644, 890–906 (2006)

    ADS  CAS  Google Scholar 

  37. Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. Ser. 123, 3–40 (1999)

    ADS  CAS  Google Scholar 

  38. Leitherer, C. et al. The effects of stellar rotation. II. A comprehensive set of Starburst99 models. Astrophys. J. Suppl. Ser. 212, 14 (2014)

    ADS  Google Scholar 

  39. Meynet, G., Maeder, A., Schaller, G., Schaerer, D. & Charbonnel, C. Grids of massive stars with high mass loss rates. V. From 12 to 120 M at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. Astron. Astrophys. Suppl. Ser. 103, 97–105 (1994)

    ADS  CAS  Google Scholar 

  40. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012)

    Google Scholar 

  41. Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. Evolutionary tracks and isochrones for low- and intermediate-mass stars: from 0.15 to 7 M, and from Z = 0.0004 to 0.03. Astron. Astrophys. Suppl. Ser. 141, 371–383 (2000)

    ADS  CAS  Google Scholar 

  42. Lejeune, T., Buser, R. & Cuisinier, F. Standard stellar library for evolutionary synthesis. I. Calibration of theoretical spectra. Astron. Astrophys. Suppl. Ser. 125, 229–246 (1997)

    ADS  Google Scholar 

  43. Schmutz, W., Leitherer, C. & Gruenwald, R. Theoretical continuum energy distributions for Wolf-Rayet stars. Publ. Astron. Soc. Pacif. 104, 1164–1172 (1992)

    ADS  Google Scholar 

  44. Hillier, D. J. & Miller, D. L. The treatment of non-LTE line blanketing in spherically expanding outflows. Astrophys. J. 496, 407–427 (1998)

    ADS  CAS  Google Scholar 

  45. Pauldrach, A. W. A. et al. Realistic Models for Expanding Atmospheres. In ASP Conf. Ser. Vol. 131, Properties of Hot, Luminous Stars (ed. Howarth, I. D. ) 258–277 (Astronomical Society of the Pacific, 1998)

  46. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    ADS  Google Scholar 

  47. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    ADS  Google Scholar 

  48. Aller, L. H. Physics of Thermal Gaseous Nebulae (Astrophysics and Space Science Library Vol. 112, Reidel, 1984)

  49. Wright, E. L. A cosmology calculator for the World Wide Web. Publ. Astron. Soc. Pacif. 118, 1711–1715 (2006)

    ADS  Google Scholar 

  50. Kennicutt, R. C. Jr. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998)

    ADS  CAS  Google Scholar 

  51. Bouchet, P., Lequeux, J., Maurice, E., Prévot, L. & Prévot-Burnichon, M. L. The visible and infrared extinction law and the gas-to-dust ratio in the Small Magellanic Cloud. Astron. Astrophys. 149, 330–336 (1985)

    ADS  CAS  Google Scholar 

  52. Gordon, K. D. & Clayton, G. C. Starburst-like dust extinction in the Small Magellanic Cloud. Astrophys. J. 500, 816–824 (1998)

    ADS  Google Scholar 

  53. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This Letter is based on observations made with the NASA/ESA HST, obtained from the data archive at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. Support for this work was provided by NASA through grant number HST-GO-13744.001-A from the STScI. I.O. acknowledges a grant GACR 14–20666P of the Czech Science Foundation. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. GALEX is a NASA mission managed by the Jet Propulsion Laboratory. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design of the HST observational program. Y.I.I. and N.G.G. selected the galaxy sample. T.X.T. and Y.I.I. led the observations. G.W. reduced the HST data. I.O. did part of the HST data analysis. Y.I.I. and D.S. did the SED modelling and interpretation. A.V. and Y.I.I. did the Lyα interpretation. The bulk of the text was written by Y.I.I. All authors commented on the manuscript at all stages.

Corresponding author

Correspondence to Y. I. Izotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 The diagnostic diagram for narrow emission lines.

The foundations of this diagram are given in ref. 29. The galaxy J0925+1403 is shown by a large filled star, and the Luminous Compact Galaxies13 by small dark-grey circles. Also plotted are the 100,000 emission-line galaxies from SDSS DR7 (cloud of light-grey dots). The solid line30 separates star-forming galaxies (SFG) from active galactic nuclei (AGN).

Extended Data Figure 2 SED fitting of the optical spectrum of J0925+1403.

The rest-frame extinction-corrected spectrum is shown by a grey line. The stellar, ionized gas, and total modelled SEDs are shown by black dotted, dashed and solid lines, respectively.

Extended Data Figure 3 A comparison of the observed ultraviolet and optical spectrum with the modelled SED.

The observed spectrum is shown by a grey line. The total GALEX and SDSS photometric fluxes are represented by filled squares and filled circles, respectively, while the SDSS photometric fluxes within a round spectroscopic aperture of 3″ diameter are shown by open circles. Modelled SEDs, which are reddened by the Milky Way with RV,MW = 3.1 and internal extinction with different values of RV,int, are shown by black lines. Dotted, dashed and solid lines correspond to RV,int = 3.1, 2.7, and 2.4, respectively.

Extended Data Table 1 Emission-line fluxes and equivalent widths in the optical spectrum
Extended Data Table 2 Physical conditions and chemical composition
Extended Data Table 3 Global characteristics of J0925+1403

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izotov, Y., Orlitová, I., Schaerer, D. et al. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy. Nature 529, 178–180 (2016). https://doi.org/10.1038/nature16456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature16456

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing