Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tidal wetland stability in the face of human impacts and sea-level rise

Abstract

Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Wetland feedbacks.

MATTHEW KIRWAN; PATRICK MEGONIGAL

Figure 2: Conceptual links between sea-level rise and marsh accretion.
Figure 3: Human disturbance of tidal wetland ecosystems.

ILKA FELLER/LIGHTHAWK; JIM TITUS; FRIDA SIDIK; ANDY BALDWIN

References

  1. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Google Scholar 

  2. Huang, Y. et al. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Change Biol. 16, 680–695 (2010).

    ADS  Google Scholar 

  3. Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012). This article estimates that half of global wetlands have been lost due to direct human conversion.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mcleod, E. et al. A blueprint for blue carbon: towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ 9, 552–560 (2011).

    Google Scholar 

  5. Craft, C. et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).

    Google Scholar 

  6. Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010). This article demonstrates that the maximum rate of sea-level rise a marsh can survive is a linear function of sediment supply and tidal range.

    ADS  Google Scholar 

  7. Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).

    ADS  Google Scholar 

  8. French, J. Tidal marsh sedimentation and resilience to environmental change: exploratory modeling of tidal, sea-level, and sediment supply forcing in predominantly allochthonous systems. Mar. Geol. 235, 119–136 (2006).

    ADS  Google Scholar 

  9. Cahoon, D. R. et al. in Wetlands and Natural Resource Management: Ecological Studies, Vol. 190 (eds Verhoeven, J. T. A., Beltman, B., Bobbink, R. & Whigham, D. F.) 271–292 (Springer, 2006). This provides a summary of elevation trends and the factors that control them from marshes around the world.

    Google Scholar 

  10. Rampino, M. R. & Sanders, J. E. Episodic growth of Holocene tidal marshes in the northeastern United States: a possible indicator of eustatic sea-level fluctuations. Geology 9, 63–67 (1981).

    ADS  Google Scholar 

  11. Kemp, A. C. et al. Climate related sea-level variations over the past two millennia. Proc. Natl Acad. Sci. USA 108, 11017–11022 (2011).

    ADS  CAS  PubMed  Google Scholar 

  12. Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).

    ADS  Google Scholar 

  13. Friedrichs, C. T. & Perry, J. E. Tidal salt marsh morphodynamics. J. Coast. Res. 27, 6–36 (2001).

    Google Scholar 

  14. Larsen, L. G. & Harvey, J. W. How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands worldwide. Am. Nat. 176, E66–E79 (2010).

    PubMed  Google Scholar 

  15. Marani, M., Da Lio, C. & D'Alpaos, A. Vegetation engineers marsh morphology through multiple competing stable states. Proc. Natl Acad. Sci. USA 110, 3259–3263 (2013).

    ADS  CAS  PubMed  Google Scholar 

  16. Reed, D. J. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surf. Processes Landforms 20, 39–48 (1995).

    ADS  Google Scholar 

  17. Temmerman, S., Goers, G., Wartel, S. & Meire, P. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt Estuary, Belgium, SW Netherlands. Earth Surf. Processes Landforms 28, 739–755 (2003).

    ADS  Google Scholar 

  18. Marion, C., Anthony, E. J. & Trentesaux, A. Short-term (≤ 2 yrs) estuarine mudflat and saltmarsh sedimentation: High-resolution data from ultrasonic altimetry, rod surface-elevation table, and filter traps. Estuar. Coast. Shelf Sci. 83, 475–484 (2009).

    ADS  Google Scholar 

  19. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Google Scholar 

  20. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002). This article proposes that an optimum elevation (flooding frequency) for plant growth defines the transition from stable to unstable marsh.

    Google Scholar 

  21. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).

    Google Scholar 

  22. Marani, M., Lanzoni, S., Silvestri, S. & Rinaldo, A. Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. J. Mar. Syst. 51, 191–210 (2004).

    Google Scholar 

  23. Temmerman, S., Moonen, P., Schoelynck, J., Govers, G. & Bouma, T. J. Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophys. Res. Lett. 39, L03406 (2012).

    ADS  Google Scholar 

  24. Möller, I. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK east coast saltmarsh. Estuar. Coast. Shelf Sci. 69, 337–351 (2006).

    ADS  Google Scholar 

  25. Mudd, S. M., D'Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediates sedimentation. J. Geophys. Res. 115, F03029 (2010).

    ADS  Google Scholar 

  26. Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).

    Google Scholar 

  27. Kolker, A. S., Kirwan, M. L., Goodbred, S. L. & Cochran, J. K. Global climate changes recorded in coastal wetland sediments: empirical observation linked to theoretical predictions. Geophys. Res. Lett. 37, L14706 (2010).

    Google Scholar 

  28. Mariotti, G. & Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. 115, F01004 (2010).

    ADS  Google Scholar 

  29. Mariotti, G. et al. Influence of storm surges and sea level on shallow tidal basin erosive processes. J. Geophys. Res. 115, C11012 (2010).

    ADS  Google Scholar 

  30. Doyle, T. W., Krauss, K. W., Conner, W. H. & From, A. S. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. For. Ecol. Manage. 259, 770–777 (2010).

    Google Scholar 

  31. Morris, J. T., Edwards, J., Crooks, S. & Reyes, E. in Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 517–531 (Springer, 2012).

    Google Scholar 

  32. Yang, S. L., Milliman, J. D., Li, P. & Xu, K. 50,000 dams later: erosion of the Yangtze River and its delta. Global Planet. Change 75, 14–20 (2011). This article reports that upstream sediment restriction causes delta erosion that liberates enough sediment to sustain marshes.

    ADS  Google Scholar 

  33. D'Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion sedimentation and vegetation dynamics. J. Geophys. Res. 112, F01008 (2007).

    ADS  Google Scholar 

  34. Kirwan, M., Murray, A. & Boyd, W. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys. Res. Lett. 35, L05403 (2008).

    ADS  Google Scholar 

  35. Kearney, M. S., Rogers, A. S., Townsend, G., Rizzo, E. & Stutzer, D. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos 83, 173–178 (2002).

    ADS  Google Scholar 

  36. Carniello, L., Defina, A. & D'Alpaos, L. Morphological evolution of the Venice lagoon: evidence from the past and trend for the future. J. Geophys. Res. 114, F04002 (2009).

    ADS  Google Scholar 

  37. Nyman, J. A., DeLaune, R. D., Roberts, H. H. & Patrick, W. H. Jr. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar. Ecol. Prog. Ser. 96, 269–279 (1993).

    ADS  Google Scholar 

  38. Fagherazzi, S., Carniello, L., D'Alpaos, L. & Defina, A. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc. Natl Acad. Sci. USA 103, 8337–8341 (2006).

    ADS  CAS  PubMed  Google Scholar 

  39. Stevenson, J. C. & Kearney, M. S. in Human Impacts on Salt Marshes: A Global Perspective (eds Silliman, B. R., Grosholtz, E. D. & Bertness, M. D.) 171–206 (Univ. California Press, 2009).

    Google Scholar 

  40. Davis, R. A., Yale, K. E., Pekala, J. M. & Hamilton, M. V. Barrier island stratigraphy and Holocene history of west-central Florida. Mar. Geol. 200, 103–123 (2003).

    ADS  Google Scholar 

  41. Balduff, D. M. Pedogenesis, Inventory, and Utilization of Subaqueous Soils in Chincoteague Bay, Maryland. PhD thesis, Univ. Maryland (2007).

    Google Scholar 

  42. D'Alpaos, A., Da Lio, C. & Marani, M. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5, 550–562 (2012).

    Google Scholar 

  43. Kirwan, M. L., Murray, A. B., Donnelly, J. P. & Corbett, D. R. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology 39, 507–510 (2011).

    ADS  Google Scholar 

  44. Li, Y.-X., Törnqvist, T. E., Nevitt, J. M. & Kohl, B. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8,200 years ago. Earth Planet. Sci. Lett. 315–316, 41–50 (2012).

    ADS  Google Scholar 

  45. Cronin, T. M. et al. Rapid sea level rise and ice sheet response to 8,200-year climate event. Geophys. Res. Lett. 34, L20603 (2007).

    ADS  Google Scholar 

  46. Donnelly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc. Natl Acad. Sci. USA 98, 14218–14223 (2001).

    ADS  CAS  PubMed  Google Scholar 

  47. Kirwan, M. L. & Temmerman, S. Coastal marsh response to historical and future sea-level acceleration. Quat. Sci. Rev. 28, 1801–1808 (2009).

    ADS  Google Scholar 

  48. Silliman, B. R. et al. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 11234–11239 (2012). This article reports that vegetation mortality associated with oiling triggered rapid marsh edge erosion, and emphasizes the importance of vegetation health on marsh stability.

    ADS  CAS  PubMed  Google Scholar 

  49. Smith, S. M. Multi-decadal changes in salt marshes of Cape Cod, MA: Photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeas. Nat. 16, 183–208 (2009).

    Google Scholar 

  50. Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).

    Google Scholar 

  51. Silliman, B. R., van de Koppel, J., Bertness, M. D. & Mendelssohn, I. A. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).

    ADS  CAS  PubMed  Google Scholar 

  52. Alber, M., Swenson, E. M., Adamowicz, S. C. & Mendelssohn, I. A. Salt marsh dieback: an overview of recent events in the US. Estuar. Coast. Shelf Sci. 80, 1–11 (2008).

    ADS  Google Scholar 

  53. Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Change Biol. 18, 3377–3382 (2012).

    ADS  Google Scholar 

  54. Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-fuelled species shift. Nature 466, 96–99 (2010). This article reports that elevated CO 2 in isolation accelerated marsh elevation gain, but nitrogen additions caused a shift to a species unresponsive to elevated CO 2.

    ADS  CAS  PubMed  Google Scholar 

  55. Langley, J. A., Mckee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).

    ADS  CAS  PubMed  Google Scholar 

  56. Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem. Cycles 22, GB2013 (2008).

    ADS  Google Scholar 

  57. Kirwan, M. L. & Blum, L. K. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8, 987–993 (2011).

    ADS  CAS  Google Scholar 

  58. Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    ADS  CAS  PubMed  Google Scholar 

  59. Charles, H. & Dukes, J. S. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol. Appl. 19, 1758–1773 (2009).

    PubMed  Google Scholar 

  60. Gedan, K. B., Altieri, A. H. & Bertness, M. D. Uncertain future of New England salt marshes. Mar. Ecol. Prog. Ser. 434, 229–237 (2011).

    ADS  Google Scholar 

  61. Beaumont, L. J. et al. Impacts of climate change on the world's most exceptional ecoregions. Proc. Natl Acad. Sci. USA 108, 2306–2311 (2011).

    ADS  CAS  PubMed  Google Scholar 

  62. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Google Scholar 

  63. Anisfeld, S. & Hill, T. D. Fertilization effects on elevation change and belowground carbon balance in a long island sound Tidal marsh. Estuaries Coasts 35, 201–211 (2012).

    CAS  Google Scholar 

  64. Deegan, L. A. et al. Coastal eutrophication as a driver of marsh loss. Nature 490, 388–392 (2012). This article reports that long-term fertilization experiments led to channel expansion through decreased soil strength.

    ADS  CAS  PubMed  Google Scholar 

  65. Turner, R. E. Beneath the salt marsh canopy: loss of soil strength with increasing nutrient loads. Estuaries Coasts 34, 1084–1093 (2011).

    CAS  Google Scholar 

  66. Howes, N. C. et al. Hurricane-induced failure of low salinity wetlands. Proc. Natl Acad. Sci. USA 107, 14014–14019 (2010).

    ADS  CAS  PubMed  Google Scholar 

  67. Rooth, J. E. & Stevenson, J. C. Sediment deposition patterns in Phragmites australis communities: Implications for coastal areas threatened by rising sea-level. Wetlands Ecol. Mgmt 8, 173–183 (2000).

    Google Scholar 

  68. Mozdzer, T. J. & Megonigal, J. P. Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLoS ONE 7, e42794 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicholls, R. J. Coastal megacities and climate change. GeoJournal 37, 369–379 (1995).

    Google Scholar 

  70. Syvitski, J. P. et al. Sinking deltas due to human activities. Nature Geosci. 2, 681–686 (2009).

    ADS  CAS  Google Scholar 

  71. Törnqvist, T. E. et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geosci. 1, 173–176 (2008).

    ADS  Google Scholar 

  72. Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011). This article relates temporal trends in wetland loss to trends in subsidence rates and hydrocarbon extraction.

    ADS  Google Scholar 

  73. Turner, R. E. Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. Estuaries 20, 1–13 (1997).

    Google Scholar 

  74. Syvitski, J. P., Vorosmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    ADS  CAS  PubMed  Google Scholar 

  75. Tweel, A. W. & Turner, R. E. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta. Limnol. Oceanogr. 57, 18–28 (2012).

    ADS  Google Scholar 

  76. Yang, S. L. et al. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. J. Geophys. Res. 110, F03006 (2005).

    ADS  Google Scholar 

  77. Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    ADS  CAS  PubMed  Google Scholar 

  78. Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1, 117–141 (2009).

    ADS  Google Scholar 

  79. Stedman, S. & Dahl, T. E. Status and Trends of Wetlands in the Coastal Watersheds of the Eastern United States 1998–2004 (NOAA & US Department of the Interior, 2008).

    Google Scholar 

  80. Coleman, J. M., Huh, O. K. & Braud, D. Wetland loss in world deltas. J. Coast. Res. 24, 1–14 (2008).

    Google Scholar 

  81. Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35, 519–528 (2008).

    Google Scholar 

  82. Feagin, R. A. et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 3, 1–11 (2010).

    Google Scholar 

  83. Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl Acad. Sci. USA 106, 7357–7360 (2009).

    ADS  CAS  PubMed  Google Scholar 

  84. Barbier, E. B., Georgiou, I. Y., Enchelmeyer, B. & Reed, D. J. The value of wetlands in protecting southeast Louisiana from hurricane storm surges. PLoS ONE 8, e58715 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008). This article proposes that maximal economic value of mangrove forests can accommodate competing land uses.

    ADS  CAS  PubMed  Google Scholar 

  86. Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 69–86 (2004).

    Google Scholar 

  87. van der Wal, D. & Pye, K. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology 61, 373–391 (2004).

    ADS  Google Scholar 

  88. Mattheus, C. R., Rodriguez, A. B., McKee, B. A. & Currin, C. A. Impact of land-use change and hard structures on the evolution of fringing marsh shorelines. Estuar. Coast. Shelf Sci. 88, 365–376 (2010).

    ADS  Google Scholar 

  89. Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl Acad. Sci. USA 109, 14369–14374 (2012).

    ADS  PubMed  Google Scholar 

  90. Bauer, D. M., Cyr, N. A. & Swallow, S. K. Public preferences for compensatory mitigation of salt marsh losses: a contingent choice of alternatives. Conserv. Biol. 18, 401–411 (2004).

    Google Scholar 

  91. Poulter, B., Qian, S. S. & Christensen, N. L. Jr. Determinants of coastal treelines, the role of abiotic and biotic interactions. Plant Ecol. 202, 55–66 (2009).

    Google Scholar 

  92. Larsen, L. G. & Harvey, J. W. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology 126, 279–296 (2011).

    ADS  Google Scholar 

  93. Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geosci. 2, 488–491 (2009).

    ADS  CAS  Google Scholar 

  94. Neubauer, S. C. Contributions of mineral and organic components of tidal freshwater marsh accretion. Estuar. Coast. Shelf Sci. 78, 78–88 (2008).

    ADS  Google Scholar 

  95. Turner, R. E., Swenson, E. M. & Milan, C. S. in Concepts and Controversies in Tidal Marsh Ecology (eds Weinstein, M. & Kreeger, D. A.) 583–595 (Kluwer, 2000).

    Google Scholar 

  96. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Science 478, 49–56 (2011).

    CAS  Google Scholar 

  97. Freeman, C., Ostle, N. & Kang, H. An enzymatic 'latch' on a global carbon store. Nature 409, 149 (2001).

    ADS  CAS  PubMed  Google Scholar 

  98. Megonigal, J. P., Hines, M. E. & Visscher, P. T. in Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes (ed. Schlesinger, W. H.) 317–424 (Elsevier–Pergamon, 2004).

    Google Scholar 

  99. Craft, C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnol. Oceanogr. 52, 1220–1230 (2007).

    ADS  CAS  Google Scholar 

  100. Weston, N. B., Vile, M. A., Neubauer, D. C. & Velinsky, D. J. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102, 135–151 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

The U.S.G.S. Global Change Research Program and the Virginia Coast Reserve Long Term Ecological Research Program (NSF DEB-0621014) supported this work financially. We thank G. Guntenspergen for conversations that enhanced this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Kirwan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprint.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirwan, M., Megonigal, J. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013). https://doi.org/10.1038/nature12856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12856

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing