Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytokinin signalling inhibitory fields provide robustness to phyllotaxis

Subjects

Abstract

How biological systems generate reproducible patterns with high precision is a central question in science1. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation2,3,4,5, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics4,6,7,8,9,10,11,12,13. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6)14, is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields establish patterns of cytokinin signalling in the meristem that contribute to the robustness of phyllotaxis by imposing a temporal sequence on organ initiation. Our findings indicate that not one but two distinct hormone-based fields may be required for achieving temporal precision during formation of reiterative structures at the SAM, thus indicating an original mechanism for providing robustness to a dynamic developmental system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AHP6 is expressed in lateral organs and regulates inflorescence architecture.
Figure 2: AHP6 regulates the plastochron.
Figure 3: AHP6 acts non-cell-autonomously downstream of auxin.
Figure 4: AHP6 inhibitory fields generate patterns of cytokinin signalling in the meristem.

Similar content being viewed by others

References

  1. Lander, A. D. Pattern, growth, and control. Cell 144, 955–969 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P. & Traas, J. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127, 5157–5165 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Reinhardt, D., Mandel, T. & Kuhlemeier, C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507–518 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Mitchison, G. J. Phyllotaxis and the Fibonacci series. Science 196, 270–275 (1977)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Veen, A. H. & Lindenmayer, A. Diffusion mechanism for phyllotaxis: theoretical physico-chemical and computer study. Plant Physiol. 60, 127–139 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Douady, S. & Couder, Y. Phyllotaxis as a dynamical self organizing process. Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J. Theor. Biol. 178, 275–294 (1996)

    Article  Google Scholar 

  9. de Reuille, P. B. et al. Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 1627–1632 (2006)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jönsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M. & Mjolsness, E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1633–1638 (2006)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. Smith, R. S. et al. A plausible model of phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1301–1306 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stoma, S. et al. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLOS Comput. Biol. 4, e1000207 (2008)

    Article  MathSciNet  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vernoux, T. et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mähönen, A. P. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311, 94–98 (2006)

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Giulini, A., Wang, J. & Jackson, D. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430, 1031–1034 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Leibfried, A. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yadav, R. K., Girke, T., Pasala, S., Xie, M. & Reddy, G. V. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc. Natl Acad. Sci. USA 106, 4941–4946 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartrina, I., Otto, E., Strnad, M., Werner, T. & Schmülling, T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23, 69–80 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Couder, Y. Initial transitions, order and disorder in phyllotactic patterns: the ontogeny of Helanthus annuus. A case study. Acta Societates Botanicarum Poloniae 67, 129–150 (1998)

    Article  Google Scholar 

  20. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  PubMed  Google Scholar 

  21. Laufs, P., Grandjean, O., Jonak, C., Kiêu, K. & Traas, J. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10, 1375–1390 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bishopp, A. et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr. Biol. 21, 917–926 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. To, J. P. C. et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16, 658–671 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Müller, B. & Sheen, J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453, 1094–1097 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dello Ioio, R. et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Marhavý, P. et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell 21, 796–804 (2011)

    Article  PubMed  CAS  Google Scholar 

  28. Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Mirabet, V., Besnard, F., Vernoux, T. & Boudaoud, A. Noise and robustness in phyllotaxis. PLoS Comput. Biol. 8, e1002389 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandez, R. et al. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nature Methods 7, 547–553 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. Deveaux, Y. et al. The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J. 36, 918–930 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Yanai, O. et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566–1571 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Schlereth, A. et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913–916 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J.-Y. et al. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc. Natl Acad. Sci. USA 103, 6055–6060 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. Karimi, M., De Meyer, B. & Hilson, P. Modular cloning in plant cells. Trends Plant Sci. 10, 103–105 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. Udvardi, M. K., Czechowski, T. & Scheible, W.-R. Eleven golden rules of quantitative RT–PCR. Plant Cell 20, 1736–1737 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rieu, I. & Powers, S. J. Real-time quantitative RT–PCR: design, calculations, and statistics. Plant Cell 21, 1031–1033 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Z., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F. & Spencer, F. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 99, 909–917 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, http://dx.doi.org/10.2202/1544-6115.1027 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003)

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  44. Dümmler, A., Lawrence, A.-M. & de Marco, A. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb. Cell Fact. 4, 34 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hejátko, J. et al. In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nature Protocols 1, 1939–1946 (2006)

    Article  PubMed  CAS  Google Scholar 

  46. Grandjean, O. et al. In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16, 74–87 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hotton, S. Finding the center of a phyllotactic pattern. J. Theor. Biol. 225, 15–32 (2003)

    Article  MathSciNet  PubMed  MATH  Google Scholar 

  48. Barbier de Reuille, P. B., Bohn-Courseau, I., Godin, C. & Traas, J. A protocol to analyse cellular dynamics during plant development. Plant J. 44, 1045–1053 (2005)

    Article  CAS  Google Scholar 

  49. Stoma, S., Fröhlich, M., Gerber, S. & Klipp, E. STSE: Spatio-temporal simulation environment dedicated to biology. BMC Bioinformatics 12, 126 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pradal, C., Boudon, F., Nouguier, C., Chopard, J. & Godin, C. PlantGL: a Python-based geometric library for 3D plant modelling at different scales. Graph. Models 71, 1–21 (2009)

    Article  Google Scholar 

  51. Peaucelle, A., Morin, H., Traas, J. & Laufs, P. Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 134, 1045–1050 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. Refahi, Y. et al. in Combinatorial Pattern Matching (Lecture Notes in Computer Science) Vol. 6661 323–335 (Springer, 2011)

  53. Guédon, Y. et al. Pattern identification and characterization reveal permutations of organs as a key genetically controlled property of post-meristematic phyllotaxis. J. Theor. Biol. (2013)

  54. Mardia, K. V. & Jupp, P. E. Directional statistics (Wiley, 2000)

    MATH  Google Scholar 

  55. Csiszár, I. & Talata, Z. Context tree estimation for not necessarily finite memory processes, via BIC and MDL. IEEE Trans. Inf. Theory 52, 1007–1016 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank M. Heisler, B. Müller and D. Weijers for sharing materials; A. Miyawaki for VENUS; D. Mast for help with plant analysis; C. Chamot and C. Lionnet (PLATIM) for help with confocal microscopy and ImageJ (C. Chamot); S. Chamot for help with live imaging; C. Gauthier and A. Laugraud (PRABI, Université Lyon I) for help with statistical analyses; Xavier Jaurand (Pi2) for help with the SEM; Y. Couder, S. Douady, M. Bennett and M.-A. Félix for their insights and support; Y. Jaillais, O. Hamant and C. Scutt for comments on the manuscript. T.V. was supported by HFSPO CDA 0047/2007 (Human Frontier Science Program Organization) and ANR-07-JCJC-0115 (Agence National de la Recherche) grants; R.D., F.P. and T.V. by the ANR-12-BSV6-0005 grant (AuxiFlo); J.L., J.T., C.G., Y.H. and T.V. by a transnational EraSysBio Grant (iSAM); F.B. by a predoctoral grant of the French Ministry of Research; and Y.R. by a CJS grant from INRA.

Author information

Authors and Affiliations

Authors

Contributions

F.B. and T.V. conceived and designed the experiments. F.B., V.Mo., B.M., G.B., P.C., F.R., J.L., S.L., C.C., E.T., P.D. and T.V. performed the experiments. Y.R., E.F., C.G., F.B., G.B., T.V. and Y.G. performed the mathematical analysis of phyllotaxis. V.Mi., G.B. and A.Bo. analysed the auxin transport network. R.D., F.P., A.Bi., Y.H. and J.T. provided reagents/materials. F.B. and T.V. analysed the data with inputs from all the authors. F.B. and T.V. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Teva Vernoux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15 and Supplementary Tables 1-3. (PDF 7993 kb)

Live-imaging of DR5::VENUS and pAHP6::GFP expression

The expression of DR5::VENUS (Magenta) and pAHP6::GFP (Green) was followed over time in the shoot apical meristem using confocal microscopy. (MOV 158 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besnard, F., Refahi, Y., Morin, V. et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505, 417–421 (2014). https://doi.org/10.1038/nature12791

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12791

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing