Exploiting diversity and synthetic biology for the production of algal biofuels

Abstract

Modern life is intimately linked to the availability of fossil fuels, which continue to meet the world's growing energy needs even though their use drives climate change, exhausts finite reserves and contributes to global political strife. Biofuels made from renewable resources could be a more sustainable alternative, particularly if sourced from organisms, such as algae, that can be farmed without using valuable arable land. Strain development and process engineering are needed to make algal biofuels practical and economically viable.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of oleaginous crops.
Figure 2: Algal biofuel production.
Figure 3: Algae cultivation methods.

References

  1. 1

    Guschina, I. A. & Harwood, J. L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45, 160–186 (2006).

    CAS  PubMed  Google Scholar 

  2. 2

    Amin, S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage. 50, 1834–1840 (2009).

    CAS  Google Scholar 

  3. 3

    Luo, Y. et al. The thermal cracking of soybean/canola oils and their methyl esters. Fuel Process. Technol. 91, 613–617 (2010).

    CAS  Google Scholar 

  4. 4

    US DOE. National Algal Biofuels Technology Roadmap. (United States Department of Energy, 2010).

  5. 5

    USDA-NASS. http://www.nass.usda.gov (2012).

  6. 6

    US Energy Information Administration. http://www.eia.gov (US Energy Information Administration, 2012).

  7. 7

    Wigmosta, M. S., Coleman, A. M., Skaggs, R. J., Huesemann, M. H. & Lane, L. J. National microalgae biofuel production potential and resource demand. Wat. Resour. Res. 47, http://dx.doi.org/10.1029/2010WR009966 (2011).

  8. 8

    Darzins, A., Pienkos, P. T. & Edye, L. Current status and potential for algal biofuels production. IEA Bioenergy Task 39 (2010).

    Google Scholar 

  9. 9

    NYSE Euronext. London International Financial Futures and Options Exchange http://www.euronext.com (NYSE Euronext, 2012).

  10. 10

    US Department of Energy. Solazyme Integrated Biorefinery: Diesel fuels from heterotrophic algae. <http://www.eere.energy.gov> (US Department of Energy, 2010).

  11. 11

    Chowdhury, R., Viamajala, S. & Gerlach, R. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration. Bioresour. Technol. 108, 108–111 (2012).

    Google Scholar 

  12. 12

    Khoo, H. H. et al. Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour. Technol. 102, 5800–5807 (2011).

    CAS  PubMed  Google Scholar 

  13. 13

    Shirvani, T., Yan, X. Y., Inderwildi, O. R., Edwards, P. P. & King, D. A. Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ. Sci. 4, 3773–3778 (2011).

    CAS  Google Scholar 

  14. 14

    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240, (2008).

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Savage, N. Algae: the scum solution. Nature 474, S15–S16 (2011).

    CAS  PubMed  Google Scholar 

  16. 16

    Scott, S. A. et al. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21, 277–286 (2010).

    CAS  PubMed  Google Scholar 

  17. 17

    Shen, Y., Yuan, W., Pei, Z. J., Wu, Q. & Mao, E. Microalgae mass production methods. Trans. ASABE 52, 1275–1287 (2009).

    Google Scholar 

  18. 18

    Leonard, A. et al. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem. Soc. Rev. 40, 860–885 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Jaycor. Review and Evaluation of Immobilized Algae Systems for the Production of Fuels from Microalgae: a Final Subcontract Report. (Solar Energy Research Institute, 1985).

  20. 20

    Amer, L., Adhikari, B. & Pellegrino, J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresour. Technol. 102, 9350–9359 (2011). This article presents an LCA, concluding that, despite higher biomass accumulation in photobioreactors, open ponds are more cost effective because of their significantly lower construction costs.

    CAS  PubMed  Google Scholar 

  21. 21

    Davis, R., Aden, A. & Pienkos, P. T. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 88, 3524–3531 (2011).

    Google Scholar 

  22. 22

    Tirichine, L. & Bowler, C. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J. 66, 45–57 (2011). This article reviews genomic sequencing efforts in algae and describes diversity from a functional perspective.

    CAS  PubMed  Google Scholar 

  23. 23

    Bechet, Q., Shilton, A., Fringer, O. B., Munoz, R. & Guieysse, B. Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ. Sci. Technol. 44, 2197–2203 (2010).

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Miyamoto, K., Hallenbeck, P. C. & Benemann, J. R. Nitrogen-fixation by thermophilic blue-green-algae (cyanobacteria) — temperature characteristics and potential use in biophotolysis. Appl. Environ. Microbiol. 37, 454–458 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Butterwick, C., Heaney, S. I. & Talling, J. F. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwat. Biol. 50, 291–300 (2005).

    Google Scholar 

  26. 26

    Bae, J. H. & Hur, S. B. Selection of suitable species of Chlorella, Nannochloris, and Nannochloropsis in high- and low-temperature seasons for mass culture of the rotifer Brachionus plicatilis. Fish. Aquat. Sci. 14, 323–332 (2011).

    CAS  Google Scholar 

  27. 27

    Griffiths, M. J. & Harrison, S. T. L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493–507 (2009).

    CAS  Google Scholar 

  28. 28

    Mutanda, T. et al. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102, 57–70 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Rodolfi, L. et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100–112 (2009). This bioprospecting study examines 30 strains in a laboratory and 4 of these in large outdoor photobioreactors. A promising marine Nannochloropsis species that grows well under various conditions and accumulates lipids at high levels was identified.

    CAS  PubMed  Google Scholar 

  30. 30

    Larkum, A. W., Ross, I. L., Kruse, O. & Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 30, 198–205 (2011).

    PubMed  Google Scholar 

  31. 31

    Moose, S. P. & Mumm, R. H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147, 969–977 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Coleman, A. W. & Mai, J. C. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J. Mol. Evol. 45, 168–177 (1997).

    ADS  CAS  PubMed  Google Scholar 

  33. 33

    Castruita, M. et al. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23, 1273–1292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Gonzalez-Ballester, D. et al. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22, 2058–2084 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Miller, R. et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 154, 1737–1752 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Boyle, N. R. et al. Three acyltransferases and a nitrogen responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J. Biol. Chem. 287, 15811–15825 (2012). The authors of this study use a large genome insertional library to identify mutants in certain genes, finding several that show altered lipid accumulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kilian, O., Benemann, C. S., Niyogi, K. K. & Vick, B. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl Acad. Sci. USA 108, 21265–21269 (2011). This article reports high rates of homologous recombination in a biofuel candidate eukaryotic algae.

    ADS  CAS  PubMed  Google Scholar 

  38. 38

    Breslow, D. K. et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nature Methods 5, 711–718 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Doucha, J. & Livansky, K. Production of high-density Chlorella culture grown in fermenters. J. Appl. Phycol. 24, 35–43 (2012).

    CAS  Google Scholar 

  40. 40

    Rajamani, S. et al. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol. Plant Microbe Interact. 21, 1184–1192 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Teplitski, M. et al. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol. 134, 137–146 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Grabski, K. & Tukaj, Z. Autoinduction activity of a conditioned medium obtained from high density cultures of the grexen alga Scenedesmus subspicatus. J. Appl. Phycol. 20, 323–330 (2008).

    Google Scholar 

  43. 43

    Vardi, A. et al. Synchronization of cell death in a dinoflagellate population is mediated by an excreted thiol protease. Environ. Microbiol. 9, 360–369 (2007).

    CAS  PubMed  Google Scholar 

  44. 44

    Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton — biochemical, ecological and evolutionary aspects. Phycologia 42, 406–419 (2003).

    Google Scholar 

  45. 45

    Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).

    PubMed  Google Scholar 

  46. 46

    Vardi, A. et al. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 4, 411–419 (2006).

    CAS  Google Scholar 

  47. 47

    Lee, J., Maeda, T., Hong, S. H. & Wood, T. K. Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. Appl. Environ. Microbiol. 75, 1703–1716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Chen, H., Fujita, M., Feng, Q. H., Clardy, J. & Fink, G. R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl Acad. Sci. USA 101, 5048–5052 (2004).

    ADS  CAS  PubMed  Google Scholar 

  49. 49

    Zhu, X. G., Long, S. P. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    CAS  PubMed  Google Scholar 

  50. 50

    Cardol, P. et al. An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc. Natl Acad. Sci. USA 105, 7881–7886 (2008).

    ADS  CAS  PubMed  Google Scholar 

  51. 51

    Ort, D. R., Zhu, X. G. & Melis, A. Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol. 155, 79–85 (2011).

    CAS  PubMed  Google Scholar 

  52. 52

    Beckmann, J. et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J. Biotechnol. 142, 70–77 (2009).

    CAS  PubMed  Google Scholar 

  53. 53

    Genkov, T., Meyer, M., Griffiths, H. & Spreitzer, R. J. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits engineered rbcS cDNA for expression in Chlamydomonas. J. Biol. Chem. 285, 19833–19841 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnol. 27, 1177–1142 (2009). This article reports the engineering of the cyanobacterium Synechococcus elongatus to convert CO 2 into the secreted fuel precursor isobutyraldehyde at high levels through the addition of several bacterial genes ( kivd, als S, ilv C and ilvD) and reports an increase in production efficiency through improvement of photosynthesis by overexpression of Rubisco.

    CAS  Google Scholar 

  55. 55

    Stitt, M. & Schulze, D. Does rubisco control the rate of photosynthesis and plant-growth — an exercise in molecular ecophysiology. Plant Cell Environ. 17, 465–487 (1994).

    CAS  Google Scholar 

  56. 56

    Johnson, X. Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii. Plant Mol. Biol. 76, 397–405 (2011).

    CAS  PubMed  Google Scholar 

  57. 57

    Moseley, J. L. et al. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J. 21, 6709–6720 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    O'Neill, B. M. et al. An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res. 40, 2782–2792 (2011). In this article, the authors develop a system for maintaining and quickly manipulating an algal chloroplast genome in S. cerivisiae by reintroducing a synthetic chloroplast genome into algae.

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Wahlen, B. D., Willis, R. M. & Seefeldt, L. C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour. Technol. 102, 2724–2730 (2011).

    CAS  PubMed  Google Scholar 

  60. 60

    Du, W., Xu, Y. Y., Zeng, J. & Liu, D. H. Novozyrn 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium. Biotechnol. Appl. Biochem. 40, 187–190 (2004).

    CAS  PubMed  Google Scholar 

  61. 61

    Wijffels, R. H. & Barbosa, M. J. An outlook on microalgal biofuels. Science 329, 796–799 (2010).

    ADS  CAS  PubMed  Google Scholar 

  62. 62

    Knothe, G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2, 759–766 (2009).

    CAS  Google Scholar 

  63. 63

    Radakovits, R., Jinkerson, R. E., Darzins, A. & Posewitz, M. C. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Andrianov, V. et al. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 8, 277–287 (2010).

    CAS  PubMed  Google Scholar 

  65. 65

    La Russa, M. et al. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J. Biotechnol. http://dx.doi.org/10.1016/j.jbiotec.2012.04.006, (19 April 2012).

  66. 66

    Keasling, J. D. & Chou, H. Metabolic engineering delivers next-generation biofuels. Nature Biotechnol. 26, 298–299 (2008).

    CAS  Google Scholar 

  67. 67

    Lohr, M., Schwender, J. & Polle, J. E. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185–186, 9–22 (2012).

    PubMed  Google Scholar 

  68. 68

    Eroglu, E. & Melis, A. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour. Technol. 101, 2359–2366 (2010).

    CAS  PubMed  Google Scholar 

  69. 69

    Wolf, F. R., Nemethy, E. K., Blanding, J. H. & Bassham, J. A. Biosynthesis of unusual acyclic isoprenoids in the alga Botryococcus-braunii. Phytochemistry 24, 733–737 (1985).

    CAS  Google Scholar 

  70. 70

    Rosch, C., Skarka, J. & Wegerer, N. Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Bioresour. Technol. 107, 191–199 (2012).

    PubMed  Google Scholar 

  71. 71

    Gilbert, N. Environment: the disappearing nutrient. Nature 461, 716–718 (2009).

    CAS  PubMed  Google Scholar 

  72. 72

    Yang, Y., Xu, J., Vail, D. & Weathers, P. Ettlia oleoabundans growth and oil production on agricultural anaerobic waste effluents. Bioresour. Technol. 102, 5076–5082 (2011).

    CAS  PubMed  Google Scholar 

  73. 73

    Ras, M., Lardon, L., Bruno, S., Bernet, N. & Steyer, J. P. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102, 200–206 (2011).

    CAS  PubMed  Google Scholar 

  74. 74

    Zamalloa, C., Boon, N. & Verstraete, W. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy 92, 733–738 (2012).

    CAS  Google Scholar 

  75. 75

    Duan, P. G. & Savage, P. E. Upgrading of crude algal bio-oil in supercritical water. Bioresour. Technol. 102, 1899–1906 (2011).

    CAS  PubMed  Google Scholar 

  76. 76

    Levine, R. B., Pinnarat, T. & Savage, P. E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24, 5235–5243 (2010).

    CAS  Google Scholar 

  77. 77

    Chen, Y. H. & Walker, T. H. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol. Lett. 33, 1973–1983 (2011).

    CAS  PubMed  Google Scholar 

  78. 78

    Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010). This report describes algal pathogens as highly diverse, and that although little is known about them, there are ecological benefits to their study.

    CAS  PubMed  Google Scholar 

  79. 79

    Van Etten, J. L., Burbank, D. E., Kuczmarski, D. & Meints, R. H. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 219, 994–996 (1983).

    ADS  CAS  PubMed  Google Scholar 

  80. 80

    Montagnes, D. J. S., Chambouvet, A., Guillou, L. & Fenton, A. Responsibility of microzooplankton and parasite pressure for the demise of toxic dinoflagellate blooms. Aquat. Microb. Ecol. 53, 211–225 (2008).

    Google Scholar 

  81. 81

    Sukenik, A. et al. Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat. Microb. Ecol. 56, 297–308 (2009).

    Google Scholar 

  82. 82

    Natrah, F. M. I. et al. Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317, 53–57 (2011).

    CAS  Google Scholar 

  83. 83

    Murphy, C. F. & Allen, D. T. Energy-water nexus for mass cultivation of algae. Environ. Sci. Technol. 45, 5861–5868 (2011).

    ADS  CAS  PubMed  Google Scholar 

  84. 84

    Christenson, L. & Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29, 686–702 (2011).

    CAS  PubMed  Google Scholar 

  85. 85

    Wu, Z. et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour. Technol. 110, 496–502 (2012).

    CAS  PubMed  Google Scholar 

  86. 86

    Li, Q., Zhao, X. Q., Chang, A. K., Zhang, Q. M. & Bai, F. W. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab. Eng. 14, 1–8 (2012).

    PubMed  Google Scholar 

  87. 87

    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Lan, E. I. & Liao, J. C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl Acad. Sci. USA 109, 6018–6023 (2012).

    ADS  CAS  Google Scholar 

  89. 89

    Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L. & Seibert, M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127–136 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, grant number DE-EE-0003373, and the California Energy Commission Initiative for Large Molecule Sustainable Fuels, Agreement Number: 500-10-039.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Mayfield.

Ethics declarations

Competing interests

S.P.M. is a founder and board member of Sapphire Energy.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Georgianna, D., Mayfield, S. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329–335 (2012). https://doi.org/10.1038/nature11479

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.