Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A three-dimensional model of the yeast genome

Abstract

Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes1,2,3. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations4,5,6,7. Disparate DNA elements co-localize into functionally defined aggregates or ‘factories’ for transcription8 and DNA replication9. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope10,11,12. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of the method.
Figure 2: Validation of the assay.
Figure 3: Folding patterns of chromosomes.
Figure 4: Inter-chromosomal interactions.
Figure 5: Three-dimensional model of the yeast genome.

Accession codes

Data deposits

Sequencing data have been deposited in the Sequence Read Archive under accession number SRP002120. An interactive website for yeast chromosomal interactions can be found at http://noble.gs.washington.edu/proj/yeast-architecture.

References

  1. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007)

    Article  CAS  Google Scholar 

  2. Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007)

    Article  Google Scholar 

  3. Zhao, R., Bodnar, M. S. & Spector, D. L. Nuclear neighborhoods and gene expression. Curr. Opin. Genet. Dev. 19, 172–179 (2009)

    Article  CAS  Google Scholar 

  4. Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S. M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Gasser, S. M. Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Stone, E. M., Heun, P., Laroche, T., Pillus, L. & Gasser, S. M. MAP kinase signaling induces nuclear reorganization in budding yeast. Curr. Biol. 10, 373–382 (2000)

    Article  CAS  Google Scholar 

  7. Casolari, J. M., Brown, C. R., Drubin, D. A., Rando, O. J. & Silver, P. A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev. 19, 1188–1198 (2005)

    Article  CAS  Google Scholar 

  8. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004)

    Article  CAS  Google Scholar 

  9. Kitamura, E., Blow, J. J. & Tanaka, T. U. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125, 1297–1308 (2006)

    Article  CAS  Google Scholar 

  10. Bystricky, K., Laroche, T., van Houwe, G., Blaszczyk, M. & Gasser, S. M. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375–387 (2005)

    Article  CAS  Google Scholar 

  11. Schober, H. et al. Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Res. 18, 261–271 (2008)

    Article  CAS  Google Scholar 

  12. Berger, A. B. et al. High-resolution statistical mapping reveals gene territories in live yeast. Nature Methods 5, 1031–1037 (2008)

    Article  CAS  Google Scholar 

  13. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354 (2006)

    Article  CAS  Google Scholar 

  15. Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet. 36, 889–893 (2004)

    Article  CAS  Google Scholar 

  16. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006)

    Article  CAS  Google Scholar 

  18. Fullwood, M. J. & Ruan, Y. ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem. 107, 30–39 (2009)

    Article  CAS  Google Scholar 

  19. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nature Methods 4, 895–901 (2007)

    Article  CAS  Google Scholar 

  22. Venema, J. & Tollervey, D. Ribosome synthesis in Saccharomyces cerevisiae . Annu. Rev. Genet. 33, 261–311 (1999)

    Article  CAS  Google Scholar 

  23. Jin, Q., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29 (1998)

    Article  CAS  Google Scholar 

  24. Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae . J. Cell Biol. 134, 1349–1363 (1996)

    Article  CAS  Google Scholar 

  25. Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A. & Engelke, D. R. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22, 2204–2214 (2008)

    Article  CAS  Google Scholar 

  26. Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Di Rienzi, S. C., Collingwood, D., Raghuraman, M. K. & Brewer, B. J. Fragile genomic sites are associated with origins of replication. Genome. Biol. Evol. 2009, 350–363 (2009)

    Article  Google Scholar 

  28. Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Lorenz, A., Fuchs, J., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae × S. paradoxus hybrids. J. Cell Sci. 115, 3829–3835 (2002)

    Article  CAS  Google Scholar 

  30. Bystricky, K., Heun, P., Gehlen, L., Langowski, J. & Gasser, S. M. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc. Natl Acad. Sci. USA 101, 16495–16500 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the advice and assistance of M. Dorschner, the comments of S. Di Rienzi, B. Brewer and B. Byers, and the assistance of L. Zhang and G. Schroth (Illumina Inc.) in performing sequencing. We thank A. Brown for help with the 3D model. Supported by NIH grants P01GM081619, P41RR0011823, a post-doctoral fellowship (to M.A.) from the Natural Sciences and Engineering Research Council of Canada, and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Z.D. devised the strategy for characterizing genome architecture, Z.D., J.S, S.F, C.A.B. and W.S.N. designed experiments, Z.D., K.S., Y.J.K., and C.L. performed experiments, Z.D., M.A., S.M., J.S., S.F., C.A.B. and W.S.N. analysed experimental data, M.A., K.S., J.S. and W.S.N. commented on the manuscript drafts, Z.D., S.F., and C.A.B. wrote the paper.

Corresponding authors

Correspondence to C. Anthony Blau or William S. Noble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results, Methods, Data Analysis, References and Validation of Methods, Supplementary Tables 1- 4 and 14 -15 (for Supplementary Tables 5-13 see separate excel files) and Supplementary Figures 1-18 with legends. Minor errors in this file were corrected on 19 May 2010. (PDF 11280 kb)

Supplementary Table 5

This file contains a list of intra-chromosomal interactions identified from HindIII libraries at the threshold of FDR 1%. (XLS 6770 kb)

Supplementary Table 6

This file contains a list of inter-chromosomal interactions identified from HindIII libraries at the threshold of FDR 1%. (XLS 23326 kb)

Supplementary Table 7

This file contains a list of intra-chromosomal interactions identified from EcoRI libraries at the threshold of FDR 1%. (XLS 3164 kb)

Supplementary Table 8

This file contains a list of inter-chromosomal interactions identified from EcoRI libraries at the threshold of FDR 1%. (XLS 6910 kb)

Supplementary Table 9

This file contains the statistical data with respect to intra- and inter-chromosomal interactions-HindIII. (XLS 27 kb)

Supplementary Table 10

This file contains a list of intra-chromosomal interactions between the 20 and 30 kb regions of the ends of the chromosomes. (XLS 54 kb)

Supplementary Table 11

This file contains a list of Inter-chromosomal telomere pairing. (XLS 146 kb)

Supplementary Table 12

This file contains a list of primers used in this project. (XLS 27 kb)

Supplementary Table 13

This file contains a list of mappable HindIII and EcoRI fragments in each chromosome. (XLS 392 kb)

Supplementary Information

This file contains a 3d model of the yeast genome. This file can be opened using Rasmol (http://rasmol.org/). (PDB 1840 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z., Andronescu, M., Schutz, K. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010). https://doi.org/10.1038/nature08973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08973

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research