Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Early-warning signals for critical transitions

Abstract

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Some characteristic changes in non-equilibrium dynamics as a system approaches a catastrophic bifurcation (such as F 1 or F 2, Box 1).
Figure 2: Early warning signals for a critical transition in a time series generated by a model of a harvested population 77 driven slowly across a bifurcation.
Figure 3: Ecosystems may undergo a predictable sequence of self-organized spatial patterns as they approach a critical transition.
Figure 4: Critical slowing down indicated by an increase in lag-1 autocorrelation in climate dynamics.
Figure 5: Subtle changes in brain activity before an epileptic seizure may be used as an early warning signal.

References

  1. Venegas, J. G. et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434, 777–782 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Litt, B. et al. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. McSharry, P. E., Smith, L. A. & Tarassenko, L. Prediction of epileptic seizures: are nonlinear methods relevant? Nature Med. 9, 241–242 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Kambhu, J., Weidman, S. & Krishnan, N. New Directions for Understanding Systemic Risk: A Report on a Conference Cosponsored by the Federal Reserve Bank of New York and the National Academy of Sciences (The National Academies Press, 2007)

    Google Scholar 

  5. May, R. M., Levin, S. A. & Sugihara, G. Ecology for bankers. Nature 451, 893–895 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008)

    Article  ADS  CAS  PubMed  MATH  PubMed Central  Google Scholar 

  7. Scheffer, M. et al. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis Report (Island, 2005)

  9. Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, 1991)

    MATH  Google Scholar 

  10. Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer, 1995)

    Book  MATH  Google Scholar 

  11. Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009)This book is an introduction to the theory of critical transitions with examples from ecosystems, climate dynamics and social systems.

    Book  Google Scholar 

  12. Wissel, C. A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zahler, R. S. & Sussmann, H. J. Claims and accomplishments of applied catastrophe theory. Nature 269, 759–763 (1977)

    Article  ADS  Google Scholar 

  14. Bagowski, C. P. & Ferrell, J. E. Bistability in the JNK cascade. Curr. Biol. 11, 1176–1182 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977)

    Article  ADS  Google Scholar 

  16. Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007)This paper shows that recovery rate after disturbances is a good indicator of the proximity of a critical threshold.

    Article  PubMed  Google Scholar 

  17. Ovaskainen, O. & Hanski, I. Transient dynamics in metapopulation response to perturbation. Theor. Popul. Biol. 61, 285–295 (2002)

    Article  PubMed  MATH  Google Scholar 

  18. Ives, A. R. Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217–233 (1995)

    Article  Google Scholar 

  19. Kleinen, T., Held, H. & Petschel-Held, G. The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dyn. 53, 53–63 (2003)

    Article  ADS  Google Scholar 

  20. Livina, V. N. & Lenton, T. M. A modified method for detecting incipient bifurcations in a dynamical system. Geophys. Res. Lett. 34, L03712 (2007)

    Article  ADS  Google Scholar 

  21. Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004)This paper shows that autocorrelation increases in the vicinity of a bifurcation in a model of the thermohaline circulation.

    Article  ADS  Google Scholar 

  22. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008)This paper shows that autocorrelation increased before eight well-known climate transitions in the past, and describes the methodology of data processing required to do such an analysis.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Phil. Trans. R. Soc. A 367, 871–884 (2009)

    Article  ADS  MathSciNet  PubMed  MATH  Google Scholar 

  24. Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 308–315 (2006)This paper shows that variance increases in the vicinity of a bifurcation in a lake model.

    Google Scholar 

  25. Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berglund, N. & Gentz, B. Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 2, 327–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Berglund, N. & Gentz, B. Noise-Induced Phenomena in Slow-Fast Dynamical Systems - A Sample-Paths Approach (Springer, 2006)

    MATH  Google Scholar 

  28. Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008)

    Article  PubMed  Google Scholar 

  29. Horsthemke, W. & Lefever, R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer, 1984)

    MATH  Google Scholar 

  30. Carpenter, S. R. et al. Leading indicators of trophic cascades. Ecol. Lett. 11, 128–138 (2008)

    CAS  PubMed  Google Scholar 

  31. Strogatz, S. H. Nonlinear Dynamics and Chaos - With Applications to Physics, Biology, Chemistry and Engineering 1st edn 248–254 (Addison-Wesley, 1994)

    Google Scholar 

  32. Chisholm, R. A. & Filotas, E. Critical slowing down as an indicator of transitions in two-species models. J. Theor. Biol. 257, 142–149 (2009)

    Article  MathSciNet  PubMed  MATH  ADS  Google Scholar 

  33. Vandermeer, J. & Yodzis, P. Basin boundary collision as a model of discontinuous change in ecosystems. Ecology 80, 1817–1827 (1999)

    Article  Google Scholar 

  34. Rinaldi, S. & Scheffer, M. Geometric analysis of ecological models with slow and fast processes. Ecosystems 3, 507–521 (2000)

    Article  Google Scholar 

  35. Vandermeer, J., Stone, L. & Blasius, B. Categories of chaos and fractal basin boundaries in forced predator-prey models. Chaos Solitons Fractals 12, 265–276 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Leung, H. K. Bifurcation of synchronization as a nonequilibrium phase transition. Physica A 281, 311–317 (2000)

    Article  ADS  Google Scholar 

  37. Scheffer, M., Westley, F. & Brock, W. Slow response of societies to new problems: causes and costs. Ecosystems 6, 493–502 (2003)

    Article  Google Scholar 

  38. Holyst, J. A., Kacperski, K. & Schweitzer, F. Social impact models of opinion dynamics. Annu. Rev. Comput. Phys. 9, 253–273 (2002)

    MATH  Google Scholar 

  39. Bascompte, J. & Solé, R. V. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 65, 465–473 (1996)

    Article  Google Scholar 

  40. Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998)

    Article  ADS  CAS  Google Scholar 

  41. Solé, R. V. et al. Phase transitions and complex systems. Complexity 1, 13–26 (1996)

    Article  Google Scholar 

  42. Kefi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)This paper discusses how self-organized vegetation patterns may indicate the vicinity of a catastrophic bifurcation in which all vegetation is lost.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Tredicce, J. R. et al. Critical slowing down at a bifurcation. Am. J. Phys. 72, 799–809 (2004)

    Article  ADS  Google Scholar 

  46. Matsumoto, G. & Kunisawa, T. Critical slowing-down near the transition region from the resting to time-ordered states in squid giant axons. J. Phys. Soc. Jpn 44, 1047–1048 (1978)

    Article  ADS  CAS  Google Scholar 

  47. Alley, R. B. et al. Abrupt climate change. Science 299, 2005–2010 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Kump, L. R. Foreshadowing the glacial era. Nature 436, 333–334 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  52. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008)

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995)

    Article  ADS  CAS  Google Scholar 

  54. Bakke, J. et al. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci. 2, 202–205 (2009)

    Article  ADS  CAS  Google Scholar 

  55. Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Crowley, T. J. & Hyde, W. T. Transient nature of late Pleistocene climate variability. Nature 456, 226–230 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Scheffer, M. & van Nes, E. H. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584, 455–466 (2007)

    Article  CAS  Google Scholar 

  58. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003)

    Article  Google Scholar 

  59. Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008)This paper shows that increased variance in exploited fish stocks may arise from higher growth rates leading to stronger nonlinearity.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and winding road. Brain 130, 314–333 (2007)

    Article  PubMed  Google Scholar 

  62. Elger, C. E. & Lehnertz, K. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10, 786–789 (1998)

    Article  CAS  PubMed  Google Scholar 

  63. Brock, W., Lakonishok, J. & Lebaron, B. Simple technical trading rules and the stochastic properties of stock returns. J. Finance 47, 1731–1764 (1992)

    Article  Google Scholar 

  64. Lo, A. W., Mamaysky, H. & Wang, J. Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. J. Finance 55, 1705–1765 (2000)

    Article  Google Scholar 

  65. Lebaron, B. The stability of moving average technical trading rules on the Dow Jones Index. Deriv. Use Trad. Regul. 5, 324–338 (2000)

    Google Scholar 

  66. Bates, D. S. The crash of 87 - was it expected? The evidence from options markets. J. Finance 46, 1009–1044 (1991)

    Article  Google Scholar 

  67. Bates, D. S. Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9, 69–107 (1996)

    Article  Google Scholar 

  68. Hens, T. & Schenk-Hoppe, K. R. Handbook of Financial Markets: Dynamics and Evolution (North-Holland, 2009)

    Google Scholar 

  69. Arvedlund, E. Calm before the storm? Low volatility often precedes market downturn. Barron’s (January 28, 2002)

    Google Scholar 

  70. Whaley, R. E. Derivatives on market volatility: hedging tools long overdue. J. Deriv. 1, 71–84 (1993)

    Article  Google Scholar 

  71. Whaley, R. E. The investor fear gauge. J. Portfol. Manage. 26, 12–17 (2000)

    Article  Google Scholar 

  72. Lebaron, B. Some relations between volatility and serial correlations in stock-market returns. J. Bus. 65, 199–219 (1992)

    Article  Google Scholar 

  73. Hong, H. & Stein, J. C. Differences of opinion, short-sales constraints, and market crashes. Rev. Financ. Stud. 16, 487–525 (2003)

    Article  Google Scholar 

  74. Bence, J. R. Analysis of short-time series - correcting for autocorrelation. Ecology 76, 628–639 (1995)

    Article  Google Scholar 

  75. Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Prentice-Hall, 1994)

    MATH  Google Scholar 

  76. Guttal, V. & Jayaprakash, C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol. 11, 450–460 (2008)

    Google Scholar 

  77. Van Nes, E. H. & Scheffer, M. Implications of spatial heterogeneity for regime shifts in ecosystems. Ecology 86, 1797–1807 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Our work was supported by the Institute Para Limes and by the South American Institute for Resilience and Sustainability Studies. The work of S.R.C. is also supported by the US National Science Foundation. The research of M.R. and V.D. is supported by the Netherlands Organisation of Scientific Research, Earth and Life Sciences, in the case of M.R. through a Vidi grant. The work of J.B. is supported by the European Heads of Research Councils, the European Science Foundation and the European Commission Sixth Framework Programme through a European Young Investigator Award. G.S. was supported by Deutsche Bank Jameson Complexity Studies Fund, and by an NSF/NOAA CAMEO Grant NA08OAR4320894.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Scheffer.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scheffer, M., Bascompte, J., Brock, W. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009). https://doi.org/10.1038/nature08227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08227

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing