The late Precambrian greening of the Earth

Abstract

Many aspects of the carbon cycle can be assessed from temporal changes in the 13C/12C ratio of oceanic bicarbonate. 13C/12C can temporarily rise when large amounts of 13C-depleted photosynthetic organic matter are buried at enhanced rates1, and can decrease if phytomass is rapidly oxidized2 or if low 13C is rapidly released from methane clathrates3. Assuming that variations of the marine 13C/12C ratio are directly recorded in carbonate rocks, thousands of carbon isotope analyses of late Precambrian examples have been published to correlate these otherwise undatable strata and to document perturbations to the carbon cycle just before the great expansion of metazoan life. Low 13C/12C in some Neoproterozoic carbonates is considered evidence of carbon cycle perturbations unique to the Precambrian. These include complete oxidation of all organic matter in the ocean2 and complete productivity collapse such that low-13C/12C hydrothermal CO2 becomes the main input of carbon4. Here we compile all published oxygen and carbon isotope data for Neoproterozoic marine carbonates, and consider them in terms of processes known to alter the isotopic composition during transformation of the initial precipitate into limestone/dolostone. We show that the combined oxygen and carbon isotope systematics are identical to those of well-understood Phanerozoic examples that lithified in coastal pore fluids, receiving a large groundwater influx of photosynthetic carbon from terrestrial phytomass. Rather than being perturbations to the carbon cycle, widely reported decreases in 13C/12C in Neoproterozoic carbonates are more easily interpreted in the same way as is done for Phanerozoic examples. This influx of terrestrial carbon is not apparent in carbonates older than 850 Myr, so we infer an explosion of photosynthesizing communities on late Precambrian land surfaces. As a result, biotically enhanced weathering generated carbon-bearing soils on a large scale and their detrital sedimentation sequestered carbon5. This facilitated a rise in O2 necessary for the expansion of multicellular life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stable isotopes in Phanerozoic carbonates.
Figure 2: Neoproterozoic carbonates.
Figure 3: All Neoproterozoic and Phanerozoic carbonates.
Figure 4: Pre-850 Myr ago marine calcite and dolomite.

References

  1. 1

    Scholle, P. A. & Arthur, M. A. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Am. Assoc. Petrol. Geol. Bull. 64, 67–87 (1980)

    CAS  Google Scholar 

  2. 2

    Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Jiang, G. Q., Kennedy, M. J. & Christie-Blick, N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Land, L. S. Limestone diagenesis — some geochemical considerations. US Geol. Surv. Bull. 1578, 129–137 (1986)

    Google Scholar 

  7. 7

    Melim, L. A., Swart, P. K. & Maliva, R. G. in Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project Vol. 70 (ed. Ginsburg, R.N.) 137–161 (SEPM, 2001)

    Google Scholar 

  8. 8

    Quinn, T. M. Meteoric diagenesis of Plio-Pleistocene limestones at Enewetak Atoll. J. Sedim. Petrol. 61, 681–703 (1990)

    Google Scholar 

  9. 9

    Gross, M. G. & Tracey, J. I. Oxygen and carbon isotopic composition of limestones and dolomites, Bikini and Eniwetok Atolls. Science 151, 1082–1084 (1966)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Banner, J. L. & Hanson, G. N. Calculation of simultaneous isotopic and trace-element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54, 3123–3137 (1990)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Taylor, K. G., Gawthorpe, R. L., Curtis, C. D., Marshall, J. D. & Awwiller, D. N. Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado. J. Sedim. Res. 70, 360–372 (2000)

    Article  Google Scholar 

  12. 12

    Hendry, J. P., Wilkinson, M., Fallick, A. E. & Haszeldine, R. S. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea. J. Sedim. Res. 70, 227–239 (2000)

    CAS  Article  Google Scholar 

  13. 13

    Fayek, M. et al. In situ stable isotopic evidence for protracted and complex carbonate cementation in a petroleum reservoir, North Coles Levee, San Joaquin Basin, California, USA. J. Sedim. Res. 71, 444–458 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Hathaway, J. C. et al. United States Geological Survey core drilling on the Atlantic Shelf. Science 206, 515–527 (1979)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Moore, W. S. S. a. r. m. i. e. n. t. o. J. L. & Key, R. M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geosci. 1, 309–311 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Brooks, S. M. & Whitaker, F. F. Geochemical and physical controls on vadose zone hydrology of Holocene carbonate sands, grand Bahama Island. Earth Surf. Process. Landforms 22, 45–58 (1997)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bristow, T. F. & Kennedy, M. J. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology 36, 863–866 (2008)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Pokrovskii, B. G., Melezhik, V. A. & Bujakaite, M. I. Carbon, oxygen, strontium, and sulfur isotopic compositions in late Precambrian rocks of the Patom Complex, central Siberia: Communication 2. Nature of carbonates with ultralow and ultrahigh δ13C values. Lithol. Miner. Res. 41, 576–587 (2006)

    CAS  Article  Google Scholar 

  19. 19

    Fairchild, I. J. & Spiro, B. Carbonate minerals in glacial sediments: geochemical clues to palaeoenvironment. Geol. Soc. Lond. Spec. Publ. 53, 201–216 (1990)

    ADS  Article  Google Scholar 

  20. 20

    Muehlenbachs, K. The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem. Geol. 145, 263–273 (1998)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Horodyski, R. J. & Knauth, L. P. Life on land in the Precambrian. Science 263, 494–498 (1994)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Prave, A. R. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30, 811–814 (2002)

    ADS  Article  Google Scholar 

  24. 24

    Yuan, X. L., Xiao, S. H. & Taylor, T. N. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kaufman, A. J., Knoll, A. H. & Awramik, S. M. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions-Upper Tindir Group, Northwestern Canada as a test case. Geology 20, 181–185 (1992)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Lenton, T. M. & Watson, A. J. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys. Res. Lett. 31 L05202 10.1029/2003GL018802 (2004)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Schwartzman, D. Life, Temperature, and the Earth (Columbia Univ. Press, 1999)

    Google Scholar 

Download references

Acknowledgements

We thank K. McFadden for help compiling the data. L.P.K. was funded by NASA Exobiology grants NG04GJ47G and NNX08AT72G. M.J.K. was funded by NASA Exobiology NNG04GJ42G and NSF EAR 0345207.

Author Contributions Both authors shared equally in interpretations and implications of the data. L.P.K. compiled the data, wrote the initial draft, and managed revisions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Paul Knauth.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and References for data in Figures 1-4. (PDF 244 kb)

Supplementary Data

This file contains data used to compile Figures 1-4. (XLS 1490 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knauth, L., Kennedy, M. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009). https://doi.org/10.1038/nature08213

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.