Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Angiogenesis as a therapeutic target

Abstract

Inhibiting angiogenesis is a promising strategy for treatment of cancer and several other disorders, including age-related macular degeneration. Major progress towards a treatment has been achieved over the past few years, and the first antiangiogenic agents have been recently approved for use in several countries. Therapeutic angiogenesis (promoting new vessel growth to treat ischaemic disorders) is an exciting frontier of cardiovascular medicine, but further understanding of the mechanisms of vascular morphogenesis is needed first.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A few of the molecular and cellular players in the tumour/microvascular microenvironment.
Figure 2: Chemotherapy targets.
Figure 3: Various strategies to inhibit VEGF signalling.
Figure 4: Computed tomography chest scans.

References

  1. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nature Rev. Cancer 2, 795–803 (2002).

    CAS  Google Scholar 

  2. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  3. Algire, G. H., Chalkley, H. W., Legallais, F. Y. & Park, H. D. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl Cancer Inst. 6, 73–85 (1945).

    Google Scholar 

  4. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  5. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. Gragoudas, E. S., Adamis, A. P., Cunningham, E. T. Jr, Feinsod, M. & Guyer, D. R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    CAS  PubMed  Google Scholar 

  7. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nature Rev. Cancer 2, 727–739 (2002).

    CAS  Google Scholar 

  8. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003).

    CAS  PubMed  Google Scholar 

  9. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    CAS  PubMed  Google Scholar 

  10. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    CAS  PubMed  Google Scholar 

  11. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Med. 8, 841–849 (2002).

    CAS  PubMed  Google Scholar 

  12. Gerber, H. -P. et al. Vascular endothelial growth factor regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    ADS  CAS  PubMed  Google Scholar 

  13. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Med. 8, 831–840 (2002).

    CAS  PubMed  Google Scholar 

  14. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    CAS  PubMed  Google Scholar 

  15. LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    ADS  CAS  PubMed  Google Scholar 

  16. Wey, J. S. et al. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 104, 427–438 (2005).

    CAS  PubMed  Google Scholar 

  17. Safran, M. & Kaelin, W. J. Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368–4380 (2002).

    CAS  PubMed  Google Scholar 

  19. Lonser, R. R. et al. von Hippel–Lindau disease. Lancet 361, 2059–2067 (2003).

    CAS  PubMed  Google Scholar 

  20. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-VEGF antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rak, J. et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 55, 4575–4580 (1995).

    CAS  PubMed  Google Scholar 

  22. Brugarolas, J. & Kaelin, W. G. Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6, 7–10 (2004).

    CAS  PubMed  Google Scholar 

  23. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).

    ADS  CAS  PubMed  Google Scholar 

  24. Gerber, H. P. & Ferrara, N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 65, 671–680 (2005).

    CAS  PubMed  Google Scholar 

  25. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    ADS  CAS  PubMed  Google Scholar 

  26. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res. 59, 5209–5218 (1999).

    CAS  PubMed  Google Scholar 

  27. Wood, J. M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).

    CAS  PubMed  Google Scholar 

  28. Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A. & Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 60, 6253–6258 (2000).

    CAS  PubMed  Google Scholar 

  29. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P. & Hanahan, D. VEGF-A has a critical, non redundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell 1, 193–202 (2002).

    CAS  PubMed  Google Scholar 

  31. Lindhal, P., Johansson, B. E., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Google Scholar 

  32. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong, J. et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 23, 2800–2810 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maisonpierre, P. C. et al. Angiopoietin-2, a natural antagonist for Tie-2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    CAS  PubMed  Google Scholar 

  35. Oliner, J. et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6, 507–516 (2004).

    CAS  PubMed  Google Scholar 

  36. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    ADS  CAS  PubMed  Google Scholar 

  37. Klagsbrun, M. & Eichmann, A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev. 16, 535–548 (2005).

    CAS  PubMed  Google Scholar 

  38. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    CAS  PubMed  Google Scholar 

  39. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev. Mol. Cell. Biol. 6, 462–475 (2005).

    CAS  Google Scholar 

  40. Pandey, A., Shao, H., Marks, R. M., Polverini, P. J. & Dixit, V. M. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268, 567–569 (1995).

    ADS  CAS  PubMed  Google Scholar 

  41. Martiny-Baron, G. et al. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6, 248–257 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dobrzanski, P. et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res. 64, 910–919 (2004).

    CAS  PubMed  Google Scholar 

  43. Wang, B. et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4, 19–29 (2003).

    PubMed  Google Scholar 

  44. DiPietro, L. A. Thrombospondin as a regulator of angiogenesis. In Regulation of Angiogenesis (eds Rosen, E. & Goldberg, I. D.) 295–314 (Springer, Berlin, 1997).

    Google Scholar 

  45. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    CAS  PubMed  Google Scholar 

  46. Sund, M. et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc. Natl Acad. Sci. USA 102, 2934–2939 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pike, S. E. et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188, 2349–2356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Watanabe, K. et al. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J. Clin. Invest. 114, 898–907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nyberg, P., Xie, L. & Kalluri, R. Endogenous inhibitors of angiogenesis. Cancer Res. 65, 3967–3979 (2005).

    CAS  PubMed  Google Scholar 

  50. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  PubMed  Google Scholar 

  51. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med. 5, 434–438 (1999).

    CAS  PubMed  Google Scholar 

  52. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    CAS  PubMed  Google Scholar 

  53. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruzinova, M. B. et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4, 277–289 (2003).

    CAS  PubMed  Google Scholar 

  55. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med. 9, 789–795 (2003).

    CAS  PubMed  Google Scholar 

  56. Peters, B. A. et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Med. 11, 261–262 (2005).

    CAS  PubMed  Google Scholar 

  57. Shaked, Y. et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7, 101–111 (2005).

    CAS  PubMed  Google Scholar 

  58. Gasparini, G., Longo, R., Fanelli, M. & Teicher, B. A. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J. Clin. Oncol. 23, 1295–1311 (2005).

    CAS  PubMed  Google Scholar 

  59. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  60. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sweeney, C. J. et al. The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res. 61, 3369–3372 (2001).

    CAS  PubMed  Google Scholar 

  62. Bertolini, F. et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res. 63, 4342–4346 (2003).

    CAS  PubMed  Google Scholar 

  63. Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nature Rev. Cancer 4, 423–436 (2004).

    CAS  Google Scholar 

  64. Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nature Rev. Cancer 5, 516–525 (2005).

    CAS  Google Scholar 

  65. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    ADS  CAS  PubMed  Google Scholar 

  66. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  67. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med. 10, 145–147 (2004).

    CAS  PubMed  Google Scholar 

  68. Siemann, D. W., Chaplin, D. J. & Horsman, M. R. Vascular-targeting therapies for treatment of malignant disease. Cancer 100, 2491–2499 (2004).

    CAS  PubMed  Google Scholar 

  69. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).

    CAS  Google Scholar 

  70. Miller, K. D. et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 23, 792–799 (2005).

    CAS  PubMed  Google Scholar 

  71. Johnson, D. H. et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 22, 2184–2191 (2004).

    CAS  PubMed  Google Scholar 

  72. Smith, J. K., Mamoon, N. M. & Duhe, R. J. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol. Res. 14 175–225 (2004).

    PubMed  Google Scholar 

  73. Herbst, R. S. et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 20, 3792–3803 (2002).

    CAS  PubMed  Google Scholar 

  74. Garner, A. Vascular diseases. In Pathobiology of Ocular Disease (eds Garner, A. & Klintworth, G. K.) 1625–1710 (Marcel Dekker, New York, 1994).

    Google Scholar 

  75. Ruckman, J. et al. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998).

    CAS  PubMed  Google Scholar 

  76. Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293, 865–881 (1999).

    CAS  PubMed  Google Scholar 

  77. Kerbel, R. S. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev. 20, 79–86 (2001).

    CAS  PubMed  Google Scholar 

  78. Sweeney, C. J., Miller, K. D. & Sledge, G. W. Jr. Resistance in the anti-angiogenic era: nay-saying or a word of caution? Trends Mol. Med. 9, 24–29 (2003).

    CAS  PubMed  Google Scholar 

  79. Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J. & Kerbel, R. S. Effect of p53 status on tumor response to antiangiogenic therapy. Science 295, 1526–1528 (2002).

    ADS  CAS  PubMed  Google Scholar 

  80. Glade Bender, J., Cooney, E. M., Kandel, J. J. & Yamashiro, D. J. Vascular remodeling and clinical resistance to antiangiogenic cancer therapy. Drug Resist. Updat. 7, 289–300 (2004).

    CAS  PubMed  Google Scholar 

  81. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  82. Lewis, C. & Murdoch, C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am. J. Pathol. 167, 627–635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell. Biol. 5, 816–826 (2004).

    CAS  Google Scholar 

  84. Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64, 8249–8255 (2004).

    CAS  PubMed  Google Scholar 

  85. Streubel, B. et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N. Engl. J. Med. 351, 250–259 (2004).

    CAS  PubMed  Google Scholar 

  86. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999).

    CAS  PubMed  Google Scholar 

  87. Simons, M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005).

    PubMed  Google Scholar 

  88. Lederman, R. J. et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359, 2053–2058 (2002).

    CAS  PubMed  Google Scholar 

  89. Henry, T. D. et al. The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    CAS  PubMed  Google Scholar 

  90. Heinl-Green, A. et al. The efficacy of a ‘master switch gene’ HIF-1α in a porcine model of chronic myocardial ischaemia. Eur. Heart J. 26, 1327–1332 (2005).

    CAS  PubMed  Google Scholar 

  91. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Med. 9, 702–712 (2003).

    CAS  PubMed  Google Scholar 

  92. Tateishi-Yuyama, E. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360, 427–435 (2002).

    PubMed  Google Scholar 

  93. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER-2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    CAS  PubMed  Google Scholar 

  94. Morgan, B. et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J. Clin. Oncol. 21, 3955–3964 (2003).

    CAS  PubMed  Google Scholar 

  95. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    ADS  CAS  PubMed  Google Scholar 

  96. Samson, M. et al. Human endocrine gland-derived vascular endothelial growth factor: expression early in development and in Leydig cell tumors suggests roles in normal and pathological testis angiogenesis. J. Clin. Endocrinol. Metab. 89, 4078–4088 (2004).

    CAS  PubMed  Google Scholar 

  97. Webb, T. Work on breast cancer stem cells raises questions about treatment strategies. J. Natl. Cancer Inst. 95, 774–775 (2003).

    PubMed  Google Scholar 

  98. Jones, R. J., Matsui, W. H. & Smith, B. D. Cancer stem cells: are we missing the target? J. Natl. Cancer Inst. 96, 583–585 (2004).

    PubMed  Google Scholar 

  99. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.S.K. was supported by grants from the Canadian Institutes for Health Research and the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Ethics declarations

Competing interests

The authors declare competing financial interests: Dr Kerbel has received ad hoc consulting fees from Genentech, Novartis, Amgen and Centocor. He is a paid consultant for Inclone Systems and receives research funds from Inclone Systems. Dr Kerbel is also a member of the Scientific Advisory Board of Oxigene Inc., Compound Therapeutics and Attenuon, and receives consultant fees as well as stock options. All of the aforementioned companies are involved in the late-stage anti-angiogenic drug development.

Editor’s note: The Dr Ferrara has declared interests in Genentech, who have co-sponsored this Nature Insight. However, all the editorial content was commissioned entirely independently of this partnership.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrara, N., Kerbel, R. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005). https://doi.org/10.1038/nature04483

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04483

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing