Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biology and therapeutic targeting of vascular endothelial growth factor A

Abstract

The formation of new blood vessels, called angiogenesis, is an essential pathophysiological process in which several families of regulators have been implicated. Among these, vascular endothelial growth factor A (VEGFA; also known as VEGF) and its two tyrosine kinase receptors, VEGFR1 and VEGFR2, represent a key signalling pathway mediating physiological angiogenesis and are also major therapeutic targets. VEGFA is a member of the gene family that includes VEGFB, VEGFC, VEGFD and placental growth factor (PLGF). Three decades after its initial isolation and cloning, VEGFA is arguably the most extensively investigated signalling system in angiogenesis. Although many mediators of angiogenesis have been identified, including members of the FGF family, angiopoietins, TGFβ and sphingosine 1-phosphate, all current FDA-approved anti-angiogenic drugs target the VEGF pathway. Anti-VEGF agents are widely used in oncology and, in combination with chemotherapy or immunotherapy, are now the standard of care in multiple malignancies. Anti-VEGF drugs have also revolutionized the treatment of neovascular eye disorders such as age-related macular degeneration and ischaemic retinal disorders. In this Review, we emphasize the molecular, structural and cellular basis of VEGFA action as well as recent findings illustrating unexpected interactions with other pathways and provocative reports on the role of VEGFA in regenerative medicine. We also discuss clinical and translational aspects of VEGFA. Given the crucial role that VEGFA plays in regulating angiogenesis in health and disease, this molecule is largely the focus of this Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of VEGF in angiogenesis.
Fig. 2: VEGF–VEGFR interactions and signal transduction and VEGF isoforms.
Fig. 3: Biological effects of VEGF.
Fig. 4: Complex effects of VEGF on vascular permeability.
Fig. 5: Role of VEGF in regenerative medicine.

Similar content being viewed by others

References

  1. Folkman, J. & Klagsbrun, M. Angiogenic factors. Science 235, 442–447 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Dudley, A. C. & Griffioen, A. W. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 26, 313–347 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paik, D. T. et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142, 1848–1862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paik, D. T., Cho, S., Tian, L., Chang, H. Y. & Wu, J. C. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 17, 457–473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rohlenova, K. et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 31, 862–877.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 22, 476–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Risau, W. & Flamme, I. Vasculogenesis. Ann. Rev. Cell Dev. Biol. 11, 73–91 (1995).

    Article  CAS  Google Scholar 

  9. Chung, A. S. & Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27, 563–584 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Coultas, L., Chawengsaksophak, K. & Rossant, J. Endothelial cells and VEGF in vascular development. Nature 438, 937–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl Acad. Sci. USA 88, 9267–9271 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl Acad. Sci. USA 93, 2576–2581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 1751 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl Acad. Sci. USA 95, 548–553 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lyttle, D. J., Fraser, K. M., Flemings, S. B., Mercer, A. A. & Robinson, A. J. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 68, 84–92 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meyer, M. et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363–374 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rauniyar, K., Bokharaie, H. & Jeltsch, M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis 26, 437–461 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Hiratsuka, S. et al. Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol. Cell Biol. 25, 355–363 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Benjamin, L. E. & Keshet, E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl Acad. Sci. USA 94, 8761–8766 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rattner, A., Wang, Y. & Nathans, J. Signaling pathways in neurovascular development. Annu. Rev. Neurosci. 45, 87–108 (2022).

    Article  PubMed  Google Scholar 

  27. Tischer, E. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Houck, K. A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Poltorak, Z. et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J. Biol. Chem. 272, 7151–7158 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26031–26037 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Park, J. E., Keller, G. A. & Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keyt, B. A. et al. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271, 7788–7795 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D. & Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681–691 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kunnapuu, J., Bokharaie, H. & Jeltsch, M. Proteolytic cleavages in the VEGF family: generating diversity among angiogenic VEGFs, essential for the activation of lymphangiogenic VEGFs. Biology 10, 167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat. Med. 5, 495–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Bates, D. O. et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–4131 (2002).

    CAS  PubMed  Google Scholar 

  39. Harper, S. J. & Bates, D. O. VEGF-A splicing: the key to anti-angiogenic therapeutics. Nat. Rev. Cancer 8, 880–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woolard, J. et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 64, 7822–7835 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kikuchi, R. et al. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat. Med. 20, 1464–1471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawamura, H., Li, X., Harper, S. J., Bates, D. O. & Claesson-Welsh, L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res. 68, 4683–4692 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Dardente, H., English, W. R., Valluru, M. K., Kanthou, C. & Simpson, D. Debunking the myth of the endogenous antiangiogenic Vegfaxxxb transcripts. Trends Endocrinol. Metab. 31, 398–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Eswarappa, S. M. et al. Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157, 1605–1618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xin, H., Zhong, C., Nudleman, E. & Ferrara, N. Evidence for pro-angiogenic functions of VEGF-Ax. Cell 167, 275–284.e6 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117–1133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kelly, B. D. et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 93, 1074–1081 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Fischer, S. et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am. J. Physiol. 276, C812–C820 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Irwin, D. C. et al. A potential role for reactive oxygen species and the HIF-1α-VEGF pathway in hypoxia-induced pulmonary vascular leak. Free Radic. Biol. Med. 47, 55–61 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang, N. et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6, 485–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Ryan, H. E., Lo, J. & Johnson, R. S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Dunwoodie, S. L. The role of hypoxia in development of the mammalian embryo. Dev. Cell 17, 755–773 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Vinores, S. A. et al. Implication of the hypoxia response element of the Vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J. Cell Physiol. 206, 749–758 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Mizukami, Y. et al. Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res. 64, 1765–1772 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Mizukami, Y. et al. Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol 3-kinase/Rho/ROCK and c-Myc. J. Biol. Chem. 281, 13957–13963 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujioka, S. et al. NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol. Cell Biol. 24, 7806–7819 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shchors, K. et al. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 20, 2527–2538 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mizukami, Y. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells. Nat. Med. 11, 992–997 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451, 1008–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi, K. et al. Endogenous oxidative stress, but not ER stress, induces hypoxia-independent VEGF120 release through PI3K-dependent pathways in 3T3-L1 adipocytes. Obesity 21, 1625–1634 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene 8, 519–527 (1990).

    Google Scholar 

  72. Iljin, K. et al. VEGFR3 gene structure, regulatory region, and sequence polymorphisms. FASEB J. 15, 1028–1036 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12, 13–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Cross, M. J., Dixelius, J., Matsumoto, T. & Claesson-Welsh, L. VEGF-receptor signal transduction. Trends Biochem. Sci. 28, 488–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  PubMed  Google Scholar 

  76. Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A. & Ferrara, N. Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J. Clin. Invest. 89, 244–253 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sawano, A., Takahashi, T., Yamaguchi, S. & Shibuya, M. The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCγ. Biochem. Biophys. Res. Commun. 238, 487–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Meyer, R. D., Mohammadi, M. & Rahimi, N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J. Biol. Chem. 281, 867–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Gille, H. et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits VEGF-dependent PI 3 kinase activation and endothelial cell migration. EMBO J. 19, 4064–4073 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Davis-Smyth, T., Chen, H., Park, J., Presta, L. G. & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15, 4919–4927 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wiesmann, C. et al. Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695–704 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Christinger, H. W., Fuh, G., de Vos, A. M. & Wiesmann, C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J. Biol. Chem. 279, 10382–10388 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Markovic-Mueller, S. et al. Structure of the full-length VEGFR-1 extracellular domain in complex with VEGFA. Structure 25, 341–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Shibuya, M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9, 225–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Murakami, M. et al. Signaling of vascular endothelial growth factor receptor- 1 tyrosine kinase promotes rheumatoid arthritis through activation of monocyte/macrophages. Blood 108, 1849–1856 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, Y. et al. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int. J. Cancer 119, 1519–1529 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Yao, J. et al. Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PLGF antibodies efficacy. Proc. Natl Acad. Sci. USA 108, 11590–11595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N. & Williams, L. T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl Acad. Sci. USA 90, 7533–7537 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Shibuya, M. & Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 312, 549–560 (2005).

    Article  PubMed  Google Scholar 

  100. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Fuh, G., Li, B., Crowley, C., Cunningham, B. & Wells, J. A. Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J. Biol. Chem. 273, 11197–11204 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Ruch, C., Skiniotis, G., Steinmetz, M. O., Walz, T. & Ballmer-Hofer, K. Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat. Struct. Mol. Biol. 14, 249–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Gerber, H. P. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–30343 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Tan, W. et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 22, 1829–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076–1081 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xia, P. et al. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018–2026 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ji, Q. S. et al. Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc. Natl Acad. Sci. USA 94, 2999–3003 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jekely, G., Sung, H. H., Luque, C. M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9, 197–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E. & Berger, P. Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118, 816–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Nakayama, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Bae, J. H. et al. Gatekeeping role of Nf2/Merlin in vascular tip EC induction through suppression of VEGFR2 internalization. Sci. Adv. 8, eabn2611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Genet, G. et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat. Commun. 10, 2350 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dumont, D. J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 20, 1223–1231 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Leppanen, V. M. et al. Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc. Natl Acad. Sci. USA 110, 12960–12965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. He, Y. et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl Cancer Inst. 94, 819–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Matsumura, K. et al. Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/VEGFR-3. Blood 101, 1367–1374 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Soker, S., Fidder, H., Neufeld, G. & Klagsbrun, M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 271, 5761–5767 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Pellet-Many, C., Frankel, P., Jia, H. & Zachary, I. Neuropilins: structure, function and role in disease. Biochem. J. 411, 211–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Vander Kooi, C. W. et al. Structural basis for ligand and heparin binding to neuropilin B domains. Proc. Natl Acad. Sci. USA 104, 6152–6157 (2007).

    Article  Google Scholar 

  127. Sarabipour, S. & Mac Gabhann, F. VEGF-A121a binding to Neuropilins — a concept revisited. Cell Adh. Migr. 12, 204–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Lampropoulou, A. & Ruhrberg, C. Neuropilin regulation of angiogenesis. Biochem. Soc. Trans. 42, 1623–1628 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Xu, Y. et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teran, M. & Nugent, M. A. Characterization of receptor binding kinetics for vascular endothelial growth factor-A using SPR. Anal. Biochem. 564-565, 21–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Fantin, A. et al. Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141, 556–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ema, M. & Rossant, J. Cell fate decisions in early blood vessel formation. Trends Cardiovasc. Med. 13, 254–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Geevarghese, A. & Herman, I. M. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl. Res. 163, 296–306 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Gale, N. W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949–15954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pitulescu, M. E. et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell Biol. 19, 915–927 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Kearney, J. B., Kappas, N. C., Ellerstrom, C., DiPaola, F. W. & Bautch, V. L. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 103, 4527–4535 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Chappell, J. C., Taylor, S. M., Ferrara, N. & Bautch, V. L. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell 17, 377–386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Eilken, H. M. et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat. Commun. 8, 1574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Geudens, I. & Gerhardt, H. Coordinating cell behaviour during blood vessel formation. Development 138, 4569–4583 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Yan, M. & Plowman, G. D. Delta-like 4/Notch signaling and its therapeutic implications. Clin. Cancer Res. 13, 7243–7246 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Kim, M. et al. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol. Med. 5, 1415–1430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, S. et al. Efficacy of anti-VEGF/VEGFR agents on animal models of endometriosis: a systematic review and meta-analysis. PLoS ONE 11, e0166658 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Ferrara, N. et al. Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Am. J. Pathol. 162, 1881–1893 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roberts, J. M. & Cooper, D. W. Pathogenesis and genetics of pre-eclampsia. Lancet 357, 53–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Zeisler, H. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Thadhani, R. et al. Removal of soluble fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J. Am. Soc. Nephrol. 27, 903–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Makris, A. et al. Placental growth factor reduces blood pressure in a uteroplacental ischemia model of preeclampsia in nonhuman primates. Hypertension 67, 1263–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 36, 1164–1173 (2018).

    Article  CAS  Google Scholar 

  158. Owen-Woods, C. & Kusumbe, A. Fundamentals of bone vasculature: specialization, interactions and functions. Semin. Cell Dev. Biol. 123, 36–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Gerber, H. P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sivaraj, K. K. & Adams, R. H. Blood vessel formation and function in bone. Development 143, 2706–2715 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Maes, C. et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 111, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Street, J. et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl Acad. Sci. USA 99, 9656–9661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Janowska-Wieczorek, A., Majka, M., Ratajczak, J. & Ratajczak, M. Z. Autocrine/paracrine mechanisms in human hematopoiesis. Stem Cell 19, 99–107 (2001).

    Article  CAS  Google Scholar 

  165. Kabrun, N. et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124, 2039–2048 (1997).

    Article  CAS  PubMed  Google Scholar 

  166. Gerber, H.-P. et al. VEGF regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    Article  CAS  PubMed  Google Scholar 

  167. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gerber, H. P. & Ferrara, N. The role of VEGF in normal and neoplastic hematopoiesis. J. Mol. Med. 81, 20–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    Article  CAS  PubMed  Google Scholar 

  170. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  171. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Itatani, Y. et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc. Natl Acad. Sci. USA 117, 21598–21608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells — partnering up with the immune system? Nat. Rev. Immunol. 22, 576–588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Boucher, Y., Leunig, M. & Jain, R. K. Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266 (1996).

    CAS  PubMed  Google Scholar 

  177. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotechnol. 25, 911–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Liang, W. & Ferrara, N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol. Res. 4, 83–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Negri, L. & Ferrara, N. The prokineticins: neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol. Rev. 98, 1055–1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 5, 3–8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid tumours. Nat. Rev. Immunol. 23, 106–120 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, Y., Wang, S. & Dudley, A. C. Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis 23, 17–25 (2020).

    Article  PubMed  Google Scholar 

  186. Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Uemura, A. et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog. Retin. Eye Res. 84, 100954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gariano, R. F. & Gardner, T. W. Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Ramshekar, A. & Hartnett, M. E. Vascular endothelial growth factor signaling in models of oxygen-induced retinopathy: insights into mechanisms of pathology in retinopathy of prematurity. Front. Pediatr. 9, 796143 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hellstrom, A., Smith, L. E. & Dammann, O. Retinopathy of prematurity. Lancet 382, 1445–1457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  192. Adamis, A. P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  193. Marneros, A. G. et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am. J. Pathol. 167, 1451–1459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Saint-Geniez, M., Kurihara, T., Sekiyama, E., Maldonado, A. E. & D’Amore, P. A. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc. Natl Acad. Sci. USA 106, 18751–18756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhang, Y. et al. Vascular endothelial growth factor from retinal pigment epithelium is essential in choriocapillaris and axial length maintenance. PNAS Nexus 1, pgac166 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Lejoyeux, R. et al. Choriocapillaris: fundamentals and advancements. Prog. Retin. Eye Res. 87, 100997 (2022).

    Article  PubMed  Google Scholar 

  197. Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat. Med. 16, 1107–1111 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Jager, R. D., Mieler, W. F. & Miller, J. W. Age-related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Toto, L., Di Antonio, L., Costantino, O. & Mastropasqua, R. Anti-VEGF therapy in myopic CNV. Curr. Drug Targets 22, 1054–1063 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Heier, J. S. et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 399, 729–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Claesson-Welsh, L. Vascular permeability — the essentials. Ups. J. Med. Sci. 120, 135–143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Wautier, J. L. & Wautier, M. P. Vascular permeability in diseases. Int. J. Mol. Sci. 23, 3645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nagy, J. A., Chang, S. H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  205. Dvorak, H. F. Tumors: wounds that do not heal-A historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Semin. Thromb. Hemost. 45, 576–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Eliceiri, B. P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Li, X. et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat. Commun. 7, 11017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sun, Z. et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J. Exp. Med. 209, 1363–1377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen, X. L. et al. VEGF-induced vascular permeability is mediated by FAK. Dev. Cell 22, 146–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Smith, R. O. et al. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. eLife 9, e54056 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Ethell, I. M. & Yamaguchi, Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575–586 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Termini, C. M. et al. Syndecan-2 enriches for hematopoietic stem cells and regulates stem cell repopulating capacity. Blood 139, 188–204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chen, E., Hermanson, S. & Ekker, S. C. Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103, 1710–1719 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Corti, F. et al. Syndecan-2 selectively regulates VEGF-induced vascular permeability. Nat. Cardiovasc. Res. 1, 518–528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Campa, C. et al. Effects of an anti-VEGF-A monoclonal antibody on laser-induced choroidal neovascularization in mice: optimizing methods to quantify vascular changes. Invest. Ophthalmol. Vis. Sci. 49, 1178–1183 (2008).

    Article  PubMed  Google Scholar 

  219. Kwak, N., Okamoto, N., Wood, J. M. & Campochiaro, P. A. VEGF is major stimulator in model of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 41, 3158–3164 (2000).

    CAS  PubMed  Google Scholar 

  220. Aiello, L. P. et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 46, 1473–1480 (1997).

    Article  CAS  PubMed  Google Scholar 

  221. Nagy, J. A. et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab. Invest. 86, 767–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mao, A. S. & Mooney, D. J. Regenerative medicine: current therapies and future directions. Proc. Natl Acad. Sci. USA 112, 14452–14459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  225. Bao, P. et al. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153, 347–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Lopez, J. J. et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc. Res. 40, 272–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  227. Pearlman, J. D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat. Med. 1, 1085–1089 (1995).

    Article  CAS  PubMed  Google Scholar 

  228. Henry, T. D. et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  229. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. L’Heureux, N., McAllister, T. N. & de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357, 1451–1453 (2007).

    Article  PubMed  Google Scholar 

  231. Anderson, S. M., Siegman, S. N. & Segura, T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 32, 7432–7443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hou, L., Kim, J. J., Woo, Y. J. & Huang, N. F. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 310, H455–H465 (2016).

    Article  PubMed  Google Scholar 

  233. Leeper, N. J., Hunter, A. L. & Cooke, J. P. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122, 517–526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  235. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. USA 106, 16657–16662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Karali, E. et al. VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol. Cell 54, 559–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  239. Loinard, C. et al. C/EBP homologous protein-10 (CHOP-10) limits postnatal neovascularization through control of endothelial nitric oxide synthase gene expression. Circulation 125, 1014–1026 (2012).

    Article  CAS  PubMed  Google Scholar 

  240. Zhong, C. et al. Inhibition of protein glycosylation is a novel pro-angiogenic strategy that acts via activation of stress pathways. Nat. Commun. 11, 6330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fels, D. R. & Koumenis, C. The PERK/eIF2α/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol. Ther. 5, 723–728 (2006).

    Article  CAS  PubMed  Google Scholar 

  242. Liu, L. et al. Targeting the IRE1α/XBP1 and ATF6 arms of the unfolded protein response enhances VEGF blockade to prevent retinal and choroidal neovascularization. Am. J. Pathol. 182, 1412–1424 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rivard, A. et al. Age-dependent impairment of angiogenesis. Circulation 99, 111–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  244. Jia, G., Aroor, A. R., Jia, C. & Sowers, J. R. Endothelial cell senescence in aging-related vascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1802–1809 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Hayashi, T. et al. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc. Natl Acad. Sci. USA 103, 17018–17023 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Yang, Y. M., Huang, A., Kaley, G. & Sun, D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am. J. Physiol. Heart Circ. Physiol. 297, H1829–H1836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Cheng, X. W. et al. Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1α reactivation in mice of advanced age. Circulation 122, 707–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, abc8579 (2021).

    Article  Google Scholar 

  249. Augustin, H. G. & Kipnis, J. Vascular rejuvenation is geroprotective. Science 373, 490–491 (2021).

    Article  CAS  PubMed  Google Scholar 

  250. Marneros, A. G. Effects of chronically increased VEGF-A on the aging heart. FASEB J. 32, 1550–1565 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    Article  CAS  PubMed  Google Scholar 

  252. Murakami, M. et al. The FGF system has a key role in regulating vascular integrity. J. Clin. Invest. 118, 3355–3366 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Oladipupo, S. S. et al. Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc. Natl Acad. Sci. USA 111, 13379–13384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Li, P. & Ferrara, N. Vascular heterogeneity: VEGF receptors make blood vessels special. J. Exp. Med. 219, e20212539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Karaman, S. et al. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J. Exp. Med. 219, e20210565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bosco, J. et al. VEGFR-1/Flt-1 inhibition increases angiogenesis and improves muscle function in a mouse model of Duchenne muscular dystrophy. Mol. Ther. Methods Clin. Dev. 21, 369–381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Llovet, J. M. et al. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19, 151–172 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Perez-Gutierrez, L., Li, P. & Ferrara, N. Endothelial cell diversity: the many facets of the crystal. FEBS J. https://doi.org/10.1111/febs.16660 (2022).

    Article  PubMed  Google Scholar 

  262. Li, P. et al. LIF, a mitogen for choroidal endothelial cells, protects the choriocapillaris: implications for prevention of geographic atrophy. EMBO Mol. Med. 14, e14511 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Ferrara, N. & Adamis, A. P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15, 385–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Kim, K. J., Li, B., Houck, K., Winer, J. & Ferrara, N. The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors 7, 53–64 (1992).

    Article  CAS  PubMed  Google Scholar 

  265. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  266. Presta, L. G. et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  267. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  268. Bais, C. et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141, 166–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Fala, L. Cyramza (ramucirumab) approved for the treatment of advanced gastric cancer and metastatic non-small-cell lung cancer. Am. Health Drug Benefits 8, 49–53 (2015).

    PubMed  PubMed Central  Google Scholar 

  270. Lu, D. et al. Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J. Biol. Chem. 278, 43496–43507 (2003).

    Article  CAS  PubMed  Google Scholar 

  271. Kumar, R. et al. Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. Br. J. Cancer 101, 1717–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Makker, V. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N. Engl. J. Med. 386, 437–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat. Med. 27, 802–805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Courtney, K. D. et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 26, 793–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  276. Ferrara, N. VEGF and intraocular neovascularization: from discovery to therapy. Transl. Vis. Sci. Technol. 5, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Ferrara, N., Damico, L., Shams, N., Lowman, H. & Kim, R. Developmemt of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26, 859–870 (2006).

    Article  PubMed  Google Scholar 

  278. Vorum, H., Olesen, T. K., Zinck, J. & Hedegaard, M. Real world evidence of use of anti-VEGF therapy in Denmark. Curr. Med. Res. Opin. 32, 1943–1950 (2016).

    Article  CAS  PubMed  Google Scholar 

  279. Saint-Geniez, M. et al. Endogenous VEGF is required for visual function: evidence for a survival role on muller cells and photoreceptors. PLoS ONE 3, e3554 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Long, D. et al. VEGF/VEGFR2 blockade does not cause retinal atrophy in AMD-relevant models. JCI Insight 3, e120231 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Xin, H. et al. Heparin-binding VEGFR1 variants as long-acting VEGF inhibitors for treatment of intraocular neovascular disorders. Proc. Natl Acad. Sci. USA 118, e1921252118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Karle, A. C. et al. Anti-brolucizumab immune response as one prerequisite for rare retinal vasculitis/retinal vascular occlusion adverse events. Sci. Transl Med. 15, eabq5241 (2023).

    Article  CAS  PubMed  Google Scholar 

  283. Sydnor, S. et al. Efficacy and safety of brolucizumab, aflibercept, and ranibizumab for the treatment of patients with visual impairment due to diabetic macular oedema: a systematic review and network meta-analysis. Diabetes Ther. 14, 1193–1216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Jackson, T. L. et al. A randomized controlled trial of OPT-302, a VEGF-C/D inhibitor for neovascular age-related macular degeneration. Ophthalmology 130, 588–597 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Health, award number R01EY031345. L.P.-G. is additionally supported by funding from an EMBO Postdoctoral Fellowship under grant agreement no. ALTF 126–2022.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the article and critically discussed the contents.

Corresponding author

Correspondence to Napoleone Ferrara.

Ethics declarations

Competing interests

N.F. is a co-founder of Theia Therapeutics and NVasc. L.P.-G. declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Gutiérrez, L., Ferrara, N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol 24, 816–834 (2023). https://doi.org/10.1038/s41580-023-00631-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00631-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing