Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding

Abstract

Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications. Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV). Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance. The results open the way for compact and tunable high-brightness sources of electrons and radiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In the channel-guided laser wakefield accelerator, the plasma channel was formed in a supersonic hydrogen gas jet by two pulses fired 500 ps before the drive pulse.
Figure 2: Laser propagation with and without channel.
Figure 3: Single-shot electron beam spectrum and divergence of the channel-guided accelerator, showing a bunch containing 2 × 109 electrons in a narrow distribution at 86 ± 1.8 MeV and 3 mrad divergence FWHM with contrast >10:1 above background.
Figure 4: Particle in cell simulations, here displaying the phase space of the electrons, show an energy distribution similar to that in the experiments.

Similar content being viewed by others

References

  1. Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995)

    Article  CAS  ADS  Google Scholar 

  2. Malka, V. et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)

    Article  CAS  ADS  Google Scholar 

  3. Leemans, W. P. et al. Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 174802 (2002)

    Article  CAS  ADS  Google Scholar 

  4. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  CAS  ADS  Google Scholar 

  5. Esarey, E., Sprangle, P., Krall, J. & Ting, A. Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252–288 (1996)

    Article  ADS  Google Scholar 

  6. Esarey, E., Krall, J. & Sprangle, P. Envelope analysis of intense laser pulse self-modulation in plasmas. Phys. Rev. Lett. 72, 2887–2890 (1994)

    Article  CAS  ADS  Google Scholar 

  7. Esarey, E., Sprangle, P., Krall, J. & Ting, A. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Electron. 33, 1879–1914 (1997)

    Article  CAS  ADS  Google Scholar 

  8. Najmudin, Z. et al. Self-modulated wakefield and forced laser wakefield acceleration of electrons. Phys. Plasmas 10, 2071–2077 (2003)

    Article  CAS  ADS  Google Scholar 

  9. Leemans, W. P. et al. Gamma-neutron activation experiments using laser wakefield accelerators. Phys. Plasmas 8, 2510–2516 (2001)

    Article  CAS  ADS  Google Scholar 

  10. Leemans, W. P. et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802 (2003)

    Article  CAS  ADS  Google Scholar 

  11. Catravas, P., Esarey, E. & Leemans, W. P. Femtosecond x-rays from Thomson scattering using laser wakefield accelerators. Meas. Sci. Technol. 12, 1828–1834 (2001)

    Article  CAS  ADS  Google Scholar 

  12. Wang, X. J., Qiu, X. & Ben-Zvi, I. Experimental observation of high-brightness microbunching in a photocathode RF electron gun. Phys. Rev. E 54, R3121–R3124 (1996)

    Article  CAS  ADS  Google Scholar 

  13. Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering — A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996)

    Article  CAS  ADS  Google Scholar 

  14. Sprangle, P., Esarey, E., Krall, J. & Joyce, G. Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 2200–2203 (1992)

    Article  CAS  ADS  Google Scholar 

  15. Leemans, W. P. et al. Plasma guiding and wakefield generation for second-generation experiments. IEEE Trans. Plasma Sci. 24, 331–342 (1996)

    Article  ADS  Google Scholar 

  16. Umstadter, D., Kim, J. K. & Dodd, E. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073–2076 (1996)

    Article  CAS  ADS  Google Scholar 

  17. Esarey, E., Hubbard, R. F., Leemans, W. P., Ting, A. & Sprangle, P. Electron injection into plasma wake fields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997)

    Article  CAS  ADS  Google Scholar 

  18. Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993)

    Article  CAS  ADS  Google Scholar 

  19. Volfbeyn, P., Esarey, E. & Leemans, W. P. Guiding of laser pulses in plasma channels created by the ignitor-heater technique. Phys. Plasmas 6, 2269–2277 (1999)

    Article  CAS  ADS  Google Scholar 

  20. Kim, K. Y., Alexeev, I., Fan, J., Parra, E. & Milchberg, H. M. Plasma waveguides: Addition of end funnels and generation in clustered gases. AIP Conf. Proc. 647, 646–653 (2002)

    Article  CAS  ADS  Google Scholar 

  21. Gaul, E. W. et al. Production and characterization of a fully ionized He plasma channel. Appl. Phys. Lett. 77, 4112–4114 (2000)

    Article  CAS  ADS  Google Scholar 

  22. Toth, C. et al. Powerful, pulsed, THz radiation from laser accelerated relativistic electron bunches. Proc. SPIE 5448, 491–504 (2004)

    Article  CAS  ADS  Google Scholar 

  23. Leemans, W. P. et al. Laser-driven plasma-based accelerators — Wakefield excitation, channel guiding, and laser triggered particle injection. Phys. Plasmas 5, 1615–1623 (1998)

    Article  CAS  ADS  Google Scholar 

  24. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  25. Leemans, W. P. et al. Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 5, 2899–2906 (2004)

    Article  ADS  Google Scholar 

  26. Nieter, C. & Cary, J. R. VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448–473 (2004)

    Article  ADS  Google Scholar 

  27. Katsouleas, T., Wilks, S., Chen, S., Dawson, J. M. & Su, J. J. Beam loading in plasma accelerators. Part. Accel. 22, 81–99 (1987)

    CAS  Google Scholar 

  28. Reitsma, A. J. W. et al. Simulation of electron postacceleration in a two-stage laser wakefield accelerator. Phys. Rev. ST Accel. Beams 5, 051301 (2002)

    Article  ADS  Google Scholar 

  29. Tsung, F. S. et al. Near GeV energy laser wakefield acceleration of self-injected electrons in a cm scale plasma channel. Phys. Rev. Lett. submitted

  30. Saes, M. et al. A setup for ultrafast time-resolved x-ray absorption spectroscopy. Rev. Sci. Instrum. 75, 24–30 (2004)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy and the National Science Foundation and used resources of the National Energy Research Scientific Computing Center at LBNL; C.G. was also supported by the Hertz Foundation. C.G. acknowledges his faculty advisor J. Wurtele. We appreciate contributions from G. Dugan, J. Faure, G. Fubiani, B. Nagler, K. Nakamura, N. Saleh, B. Shadwick, L. Archambault, M. Dickinson, S. Dimaggio, D. Syversrud, J. Wallig and N. Ybarrolaza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Leemans.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geddes, C., Toth, C., van Tilborg, J. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004). https://doi.org/10.1038/nature02900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02900

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing