Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana

Abstract

The underlying mechanism of circadian rhythmicity appears to be conserved among organisms, and is based on negative transcriptional feedback loops forming a cellular oscillator (or ‘clock’)1,2. Circadian changes in protein stability, phosphorylation and subcellular localization also contribute to the generation and maintenance of this clock1,2. In plants, several genes have been shown to be closely associated with the circadian system3,4. However, the molecular mechanisms proposed to regulate the plant clock are mostly based on regulation at the transcriptional level3,4. Here we provide genetic and molecular evidence for a role of ZEITLUPE (ZTL)5,6,7 in the targeted degradation of TIMING OF CAB EXPRESSION 1 (TOC1)8,9 in Arabidopsis thaliana (thale cress). The physical interaction of TOC1 with ZTL is abolished by the ztl-1 mutation, resulting in constitutive levels of TOC1 protein expression. The dark-dependent degradation of TOC1 protein requires functional ZTL, and is prevented by inhibiting the proteosome pathway. Our results show that the TOC1–ZTL interaction is important in the control of TOC1 protein stability, and is probably responsible for the regulation of circadian period by the clock.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic and molecular interaction between TOC1 and ZTL.
Figure 2: TOC1 protein and RNA expression in LD cycles.
Figure 3: TOC1 RNA and protein expression in LL.
Figure 4: Cell-free TOC1 protein degradation assay.
Figure 5: Dark-dependent TOC1 protein degradation.

Similar content being viewed by others

References

  1. Harmer, S. L., Panda, S. & Kay, S. A. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17, 215–253 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. McClung, C. R. Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 139–162 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Yanovsky, M. J. & Kay, S. A. Signaling networks in the plant circadian system. Curr. Opin. Plant Biol. 4, 429–435 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Somers, D. E., Schultz, T. F., Milnamow, M. & Kay, S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319–329 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Jarillo, J. A. et al. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410, 487–490 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kiyosue, T. & Wada, M. LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J. 23, 807–815 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Strayer, C. A. et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768–771 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Makino, S., Matsushika, A., Kojima, M., Yamashino, T. & Mizuno, T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: Characterization with APRR1-overexpressing plants. Plant Cell Physiol. 43, 58–69 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Alabadí, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001)

    Article  PubMed  Google Scholar 

  11. Wang, Z. Y. & Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Schaffer, R. et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Más, P., Alabadi, D., Yanovsky, M. J., Oyama, T. & Kay, S. A. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15, 223–236 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schultz, T. F., Kiyosue, T., Yanovsky, M., Wada, M. & Kay, S. A. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13, 2659–2670 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, P., He, Q., Yang, Y., Wang, L. & Liu, Y. Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl Acad. Sci. USA 100, 5938–5943 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Briggs, W. R. & Christie, J. M. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Sci. 7, 201–210 (2002)

    Article  Google Scholar 

  17. Deshaies, R. J. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Risseeuw, E. P. et al. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 34, 753–767 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, B. L. & Zhulin, I. B. PAS Domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Froehlich, A. C., Liu, Y., Loros, J. J. & Dunlap, J. C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297, 815–819 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Plautz, J. D. et al. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. Millar, A. J., Straume, M., Chory, J., Chua, N. H. & Kay, S. A. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163–1166 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kim, W.-Y., Geng, R. & Somers, D. E. Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc. Natl Acad. Sci. USA 100, 4933–4938 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Más, P., Devlin, P. F., Panda, S. & Kay, S. A. Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207–211 (2000)

    Article  ADS  PubMed  Google Scholar 

  26. Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21, 1301–1314 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ko, H. W., Jiang, J. & Edery, I. Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime. Nature 420, 673–678 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Grima, B. et al. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature 420, 178–182 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H. & Kay, S. A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Somers, D. E., Webb, A. A. R., Pearson, M. & Kay, S. A. The short-period mutant toc1–1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494 (1998)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Tran, T. Imaizumi and S. Hazen for critical reading of the manuscript. This research was supported by the NIH (S.A.K.) and the NSF (D.E.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve A. Kay.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Más, P., Kim, WY., Somers, D. et al. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567–570 (2003). https://doi.org/10.1038/nature02163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing