Scalable fabrication of perovskite solar cells

Abstract

Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Efficiency of perovskite solar cells.
Figure 2: Perovskite solar cell and module architectures.
Figure 3: Common scalable solution deposition methods for the roll-to-roll fabrication of perovskite solar cells.
Figure 4: Strategies to control nucleation and film formation for scaling up perovskite absorber layers.
Figure 5: Expanding processing windows, pulsed-light annealing and post-growth treatments for the fabrication of perovskite thin films.
Figure 6: Stability of perovskite solar cells and modules.
Figure 7: Typical characterization techniques suitable for large-area solar cells and modules.

References

  1. 1

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Kim, H.S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. 3

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  Google Scholar 

  4. 4

    National Revewable Energy Laboratory. NREL solar cell efficiency chart. NRELwww.nrel.gov/pv/assets/images/efficiency-chart.png (2017).

  5. 5

    Ndione, P. F., Li, Z. & Zhu, K. Effects of alloying on the optical properties of organic–inorganic lead halide perovskite thin films. J. Mater. Chem. C 4, 7775–7782 (2016).

    Article  CAS  Google Scholar 

  6. 6

    Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  7. 7

    Yin, W.J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 63903 (2014).

    Article  CAS  Google Scholar 

  8. 8

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  CAS  Google Scholar 

  9. 9

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  10. 10

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  CAS  Google Scholar 

  11. 11

    Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017). Report on the development of a slow-drying perovskite precursor to enable anti-solvent extraction in scalable deposition.

    Article  CAS  Google Scholar 

  12. 12

    Tang, S. et al. Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017).

    Article  CAS  Google Scholar 

  13. 13

    Chen, H. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017). Study demonstrating a route to an efficient large-area PSC module using methylamine gas-containing perovskite precursors.

    Article  CAS  Google Scholar 

  14. 14

    Berry, J. J. et al. Perovskite photovoltaics: the path to a printable terawatt-scale technology. ACS Energy Lett. 2, 2540–2544 (2017).

    Article  CAS  Google Scholar 

  15. 15

    Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676 (2017).

    Article  Google Scholar 

  16. 16

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). Report on the anti-solvent extraction method for control of the perovskite film morphology.

    Article  CAS  Google Scholar 

  17. 17

    Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).

    Article  CAS  Google Scholar 

  18. 18

    Hou, Y. et al. Low-temperature and hysteresis-free electron-transporting layers for efficient, regular, and planar structure perovskite solar cells. Adv. Energy Mater. 5, 1501056 (2015).

    Article  CAS  Google Scholar 

  19. 19

    Ke, W. et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J. Mater. Chem. A 4, 14276–14283 (2016).

    Article  CAS  Google Scholar 

  20. 20

    Yang, D. et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071–3078 (2016).

    Article  CAS  Google Scholar 

  21. 21

    Yoon, H., Kang, S. M., Lee, J.K. & Choi, M. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262–2266 (2016).

    Article  CAS  Google Scholar 

  22. 22

    Ku, Z., Rong, Y., Xu, M., Liu, T. & Han, H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).

    Article  Google Scholar 

  23. 23

    Li, Z. et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014).

    Article  CAS  Google Scholar 

  24. 24

    Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    Article  CAS  Google Scholar 

  25. 25

    Moon, S. J. et al. Laser-scribing patterning for the production of organometallic halide perovskite solar modules. IEEE J. Photovolt. 5, 1087–1092 (2015).

    Article  Google Scholar 

  26. 26

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 20, 12–20 (2012).

    Article  Google Scholar 

  27. 27

    Seo, J. et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7, 2642–2646 (2014).

    Article  CAS  Google Scholar 

  28. 28

    Huang, L. et al. Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org. Electron. 40, 13–23 (2017).

    Article  CAS  Google Scholar 

  29. 29

    He, M. et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 8, 16045 (2017).

    Article  CAS  Google Scholar 

  30. 30

    Ye, F. et al. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 9, 2295–2301 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Chang, W.C., Lan, D.H., Lee, K.M., Wang, X.F. & Liu, C.L. Controlled deposition and performance optimization of perovskite solar cells using ultrasonic spray-coating of photoactive layers. ChemSusChem 10, 1405–1412 (2017).

    Article  CAS  Google Scholar 

  32. 32

    Das, S. et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon. 2, 680–686 (2015).

    Article  CAS  Google Scholar 

  33. 33

    Liang, Z. et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 5, 60562–60569 (2015).

    Article  CAS  Google Scholar 

  34. 34

    Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3– x Clx mixed halide perovskite solar cells prepared by redissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016).

    Article  CAS  Google Scholar 

  35. 35

    Mohamad, D. K., Griffin, J., Bracher, C., Barrows, A. T. & Lidzey, D. G. Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv. Energy Mater. 6, 1600994 (2016).

    Article  CAS  Google Scholar 

  36. 36

    Hong, S. C. et al. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system. ACS Appl. Mater. Interfaces 9, 7879–7884 (2017).

    Article  CAS  Google Scholar 

  37. 37

    Li, S.G. et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 3, 9092–9097 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Bao, Z., Rogers, A., J. & Katz, E. H. Printable organic and polymeric semiconducting materials and devices. J. Mater. Chem. 9, 1895–1904 (1999).

    Article  CAS  Google Scholar 

  39. 39

    Mei, A. et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). Report on screen-printed PSCs with porous carbon electrodes showing outstanding device stability.

    Article  CAS  Google Scholar 

  40. 40

    Koza, J. A., Hill, J. C., Demster, A. C. & Switzer, J. A. Epitaxial electrodeposition of methylammonium lead iodide perovskites. Chem. Mater. 28, 399–405 (2016).

    Article  CAS  Google Scholar 

  41. 41

    Chen, H., Wei, Z., Zheng, X. & Yang, S. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15, 216–226 (2015).

    Article  CAS  Google Scholar 

  42. 42

    Cui, X. P. et al. Electrodeposition of PbO and its in situ conversion to CH3NH3PbI3 for mesoscopic perovskite solar cells. Chem. Commun 51, 1457–1460 (2015).

    Article  CAS  Google Scholar 

  43. 43

    Huang, J. H. et al. Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci. Rep. 5, 15889 (2015).

    Article  CAS  Google Scholar 

  44. 44

    Popov, G., Mattinen, M., Kemell, M. L., Ritala, M. & Leskelä, M. Scalable route to the fabrication of CH3NH3PbI3 perovskite thin films by electrodeposition and vapor conversion. ACS Omega 1, 1296–1306 (2016).

    Article  CAS  Google Scholar 

  45. 45

    Lee, J.W., Na, S.I. & Kim, S.S. Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J. Power Sources 339, 33–40 (2017).

    Article  CAS  Google Scholar 

  46. 46

    Liao, H.C. et al. Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation. Adv. Energy Mater. 7, 1601660 (2017).

    Article  CAS  Google Scholar 

  47. 47

    Gao, L.L., Li, C.X., Li, C.J. & Yang, G.J. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. J. Mater. Chem. A 5, 1548–1557 (2017).

    Article  CAS  Google Scholar 

  48. 48

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Ono, L. K., Wang, S., Kato, Y., Raga, S. R. & Qi, Y. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 3989–3993 (2014).

    Article  CAS  Google Scholar 

  50. 50

    Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  CAS  Google Scholar 

  51. 51

    Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014).

    Article  CAS  Google Scholar 

  52. 52

    Leyden, M. R., Lee, M. V., Raga, S. R. & Qi, Y. Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3, 16097–16103 (2015).

    Article  CAS  Google Scholar 

  53. 53

    Luo, P. et al. A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in JV curves. J. Mater. Chem. A 3, 12443–12451 (2015).

    Article  CAS  Google Scholar 

  54. 54

    Todorov, T. et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015).

    Article  CAS  Google Scholar 

  55. 55

    Guo, Y. et al. Chemical pathways connecting lead(ii) iodide and perovskite via polymeric plumbate(ii) fiber. J. Am. Chem. Soc. 137, 15907–15914 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

    Article  CAS  Google Scholar 

  57. 57

    Zhou, Y. et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3, 8178–8184 (2015).

    Article  CAS  Google Scholar 

  58. 58

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  CAS  Google Scholar 

  59. 59

    Deng, Y. et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8, 1544–1550 (2015).

    Article  CAS  Google Scholar 

  60. 60

    Huang, F. et al. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 10, 10–18 (2014).

    Article  CAS  Google Scholar 

  61. 61

    Cotella, G. et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 159, 362–369 (2017).

    Article  CAS  Google Scholar 

  62. 62

    Li, X. et al. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016). Study in which vacuum is used to assist rapid solvent removal and fabricate large-area PSCs with high PCE.

    Article  CAS  Google Scholar 

  63. 63

    Ding, B. et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl. Mater. Interfaces 8, 20067–20073 (2016).

    Article  CAS  Google Scholar 

  64. 64

    Gao, L.L. et al. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. J. Mater. Chem. A 4, 3704–3710 (2016).

    Article  CAS  Google Scholar 

  65. 65

    Ding, B. et al. Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 5, 6840–6848 (2017).

    Article  CAS  Google Scholar 

  66. 66

    Yin, M. et al. Annealing-free perovskite films by instant crystallization for efficient solar cells. J. Mater. Chem. A 4, 8548–8553 (2016).

    Article  CAS  Google Scholar 

  67. 67

    Yu, Y. et al. Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency. ACS Appl. Mater. Interfaces 9, 3667–3676 (2017).

    Article  CAS  Google Scholar 

  68. 68

    Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  CAS  Google Scholar 

  69. 69

    Ye, J. et al. Enhanced morphology and stability of high-performance perovskite solar cells with ultra-smooth surface and high fill factor via crystal growth engineering. Sustain. Energy Fuels 1, 907–914 (2017).

    Article  CAS  Google Scholar 

  70. 70

    Kim, J. et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Lett. 2, 1978–1984 (2017).

    Article  CAS  Google Scholar 

  71. 71

    Deng, Y., Dong, Q., Bi, C., Yuan, Y. & Huang, J. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv. Energy Mater. 6, 1600372 (2016).

    Article  CAS  Google Scholar 

  72. 72

    Ye, F. et al. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 29, 1701440 (2017).

    Article  CAS  Google Scholar 

  73. 73

    Noel, N. K. et al. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 10, 145–152 (2017).

    Article  CAS  Google Scholar 

  74. 74

    Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. 54, 9705–9709 (2015).

    Article  CAS  Google Scholar 

  75. 75

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  76. 76

    Zhao, Y. & Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014).

    Article  CAS  Google Scholar 

  77. 77

    Zuo, C. & Ding, L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6, 9935–9938 (2014).

    Article  CAS  Google Scholar 

  78. 78

    Chen, Y., Zhao, Y. & Liang, Z. Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem. Mater. 27, 1448–1451 (2015).

    Article  CAS  Google Scholar 

  79. 79

    Krautscheid, H. & Vielsack, F. Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10]4−, [Pb7I22]8−, [Pb10I28]8−, 1∞[Pb3I10]4− and 2∞[Pb7I18]4−. J. Chem. Soc. Dalton Trans., 2731–2735 (1999).

  80. 80

    Yantara, N. et al. Unravelling the effects of Cl addition in single step CH3NH3PbI3 perovskite solar cells. Chem. Mater. 27, 2309–2314 (2015).

    Article  CAS  Google Scholar 

  81. 81

    Yu, H. et al. The role of chlorine in the formation process of “CH3NH3PbI3–xClx” perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014).

    CAS  Google Scholar 

  82. 82

    Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014).

    Article  CAS  Google Scholar 

  83. 83

    Yang, Z. et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5, 1500328 (2015).

    Article  CAS  Google Scholar 

  84. 84

    Schmidt, T. M., Larsen-Olsen, T. T., Carlé, J. E., Angmo, D. & Krebs, F. C. Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015).

    Article  CAS  Google Scholar 

  85. 85

    Yang, M. et al. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv. Mater. 27, 6363–6370 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  87. 87

    Moore, D. T. et al. Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015). This article provides an examination of the mechanisms of crystal-growth control through the addition of chemical additives to perovskite precursor solutions.

    Article  CAS  Google Scholar 

  88. 88

    Li, G. et al. Ion-exchange-induced 2D−3D conversion of HMA1–xFAxPbI3Cl perovskite into a high-quality MA1–xFAxPbI3 perovskite. Angew. Chem. Int. Ed. 55, 13460–13464 (2016).

    Article  CAS  Google Scholar 

  89. 89

    Li, G., Zhang, T. & Zhao, Y. Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J. Mater. Chem. A 3, 19674–19678 (2015).

    Article  CAS  Google Scholar 

  90. 90

    Pan, J. et al. Room-temperature, hydrochloride-assisted, one-step deposition for highly efficient and air-stable perovskite solar cells. Adv. Mater. 28, 8309–8314 (2016).

    Article  CAS  Google Scholar 

  91. 91

    Heo, J. H., Song, D. H. & Im, S. H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014).

    Article  CAS  Google Scholar 

  92. 92

    Heo, J. H. et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 27, 3424–3430 (2015).

    Article  CAS  Google Scholar 

  93. 93

    Nayak, P. K. et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016).

    Article  CAS  Google Scholar 

  94. 94

    Lewis, G. N. Acids and bases. J. Franklin Inst. 226, 293–313 (1938).

    Article  Google Scholar 

  95. 95

    Lee, J. W., Kim, H. S. & Park, N. G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). This study demonstrates that Lewis bases can form complexes with perovskites and change the perovskite film morphology.

    Article  CAS  Google Scholar 

  96. 96

    Jeon, Y. J. et al. Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 4, 6953 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Zhang, Y. et al. PbI2–HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells. J. Am. Chem. Soc. 138, 14380–14387 (2016).

    Article  CAS  Google Scholar 

  98. 98

    Liang, P. W. et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).

    Article  CAS  Google Scholar 

  99. 99

    Wu, Y. et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).

    Article  CAS  Google Scholar 

  100. 100

    Wang, Z. K. et al. Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano 10, 5479–5489 (2016).

    Article  CAS  Google Scholar 

  101. 101

    Gu, Z. et al. Interfacial engineering of self-assembled monolayer modified semi-roll to roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3, 24254–24260 (2015).

    Article  CAS  Google Scholar 

  102. 102

    Li, B., Chen, Y., Liang, Z., Gao, D. & Huang, W. Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell. RSC Adv. 5, 94290–94295 (2015).

    Article  CAS  Google Scholar 

  103. 103

    Ding, Y., Yao, X., Zhang, X., Wei, C. & Zhao, Y. Surfactant enhanced surface coverage of CH3NH3PbI3– x Clx perovskite for highly efficient mesoscopic solar cells. J. Power Sources 272, 351–355 (2014).

    Article  CAS  Google Scholar 

  104. 104

    Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

    Article  CAS  Google Scholar 

  105. 105

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  Google Scholar 

  106. 106

    Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015).

    Article  CAS  Google Scholar 

  107. 107

    Huang, H. et al. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016).

    Article  CAS  Google Scholar 

  108. 108

    Chandrasekhar, P. S., Kumar, N., Swami, S. K., Dutta, V. & Komarala, V. K. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance. Nanoscale 8, 6792–6800 (2016).

    Article  CAS  Google Scholar 

  109. 109

    Xia, X. et al. Spray reaction prepared FA1– xCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability. RSC Adv. 6, 14792–14798 (2016).

    Article  CAS  Google Scholar 

  110. 110

    Remeika, M., Raga, S. R., Zhang, S. & Qi, Y. Transferrable optimization of spray-coated PbI2 films for perovskite solar cell fabrication. J. Mater. Chem. A 5, 5709–5718 (2017).

    Article  CAS  Google Scholar 

  111. 111

    Tai, Q. et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7, 11105 (2016).

    Article  CAS  Google Scholar 

  112. 112

    Ko, H.S., Lee, J.W. & Park, N.G. 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 3, 8808–8815 (2015).

    Article  CAS  Google Scholar 

  113. 113

    Chiang, C.H., Nazeeruddin, M. K., Grätzel, M. & Wu, C.G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 10, 808–817 (2017).

    Article  CAS  Google Scholar 

  114. 114

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  CAS  Google Scholar 

  115. 115

    Cao, X. et al. Enhanced performance of perovskite solar cells by modulating the Lewis acid–base reaction. Nanoscale 8, 19804–19810 (2016).

    Article  CAS  Google Scholar 

  116. 116

    Jo, Y. et al. High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces 3, 1500768 (2016).

    Article  CAS  Google Scholar 

  117. 117

    Cao, X. et al. Control of the morphology of PbI2 films for efficient perovskite solar cells by strong Lewis base additives. J. Mater. Chem. C 5, 7458–7464 (2017).

    Article  CAS  Google Scholar 

  118. 118

    Zhang, H. et al. Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation. Adv. Mater. 29, 1604695 (2017).

    Article  CAS  Google Scholar 

  119. 119

    Zhang, H. et al. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5, 1501354 (2015).

    Article  CAS  Google Scholar 

  120. 120

    Zhang, T., Yang, M., Zhao, Y. & Zhu, K. Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett. 15, 3959–3963 (2015).

    Article  CAS  Google Scholar 

  121. 121

    Troughton, J. et al. Rapid processing of perovskite solar cells in under 2.5 seconds. J. Mater. Chem. A 3, 9123–9127 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Troughton, J. et al. Photonic flash-annealing of lead halide perovskite solar cells in 1 ms. J. Mater. Chem. A 4, 3471–3476 (2016).

    Article  CAS  Google Scholar 

  123. 123

    Druffel, T., Dharmadasa, R., Lavery, B. W. & Ankireddy, K. Intense pulsed light processing for photovoltaic manufacturing. Sol. Energy Mater. Sol. Cells 174, 359–369 (2018).

    Article  CAS  Google Scholar 

  124. 124

    Pool, V. L. et al. Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nat. Commun. 8, 14075 (2017).

    Article  CAS  Google Scholar 

  125. 125

    Yang, M. et al. Facile fabrication of large-grain CH3NH3PbI3–xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 7, 12305 (2016).

    Article  CAS  Google Scholar 

  126. 126

    Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  CAS  Google Scholar 

  127. 127

    You, J. et al. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).

    Article  CAS  Google Scholar 

  128. 128

    Liu, C. et al. Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Adv. Funct. Mater. 26, 101–110 (2016).

    Article  CAS  Google Scholar 

  129. 129

    Liu, J. et al. Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS Appl. Mater. Interfaces 7, 24008–24015 (2015).

    Article  CAS  Google Scholar 

  130. 130

    Gouda, L. et al. Vapor and healing treatment for CH3NH3PbI3– xClx films toward large-area perovskite solar cells. Nanoscale 8, 6386–6392 (2016).

    Article  CAS  Google Scholar 

  131. 131

    Jiang, Y. et al. Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells. Mater. Horiz. 3, 548–555 (2016).

    Article  CAS  Google Scholar 

  132. 132

    Jain, S. M. et al. Frustrated Lewis pair-mediated recrystallization of CH3NH3PbI3 for improved optoelectronic quality and high voltage planar perovskite solar cells. Energy Environ. Sci. 9, 3770–3782 (2016).

    Article  CAS  Google Scholar 

  133. 133

    Kim, H.S. et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013).

    Article  CAS  Google Scholar 

  134. 134

    Ke, W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015).

    Article  CAS  Google Scholar 

  135. 135

    Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014).

    Article  CAS  Google Scholar 

  136. 136

    Jeon, N. J. et al. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J. Am. Chem. Soc. 136, 7837–7840 (2014).

    Article  CAS  Google Scholar 

  137. 137

    Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013).

    Article  CAS  Google Scholar 

  138. 138

    Christians, J. A., Fung, R. C. M. & Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014).

    Article  CAS  Google Scholar 

  139. 139

    Qin, P. et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014).

    Article  CAS  Google Scholar 

  140. 140

    Jeng, J.Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    Article  CAS  Google Scholar 

  141. 141

    Wang, Q. et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014).

    Article  CAS  Google Scholar 

  142. 142

    Jeng, J.Y. et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107–4113 (2014).

    Article  CAS  Google Scholar 

  143. 143

    Ye, S. et al. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015).

    Article  CAS  Google Scholar 

  144. 144

    Chen, C., Cheng, Y., Dai, Q. & Song, H. Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci. Rep. 5, 17684 (2015).

    Article  CAS  Google Scholar 

  145. 145

    Ke, W. et al. Perovskite solar cell with an efficient TiO2 compact film. ACS Appl. Mater. Interfaces 6, 15959–15965 (2014).

    Article  CAS  Google Scholar 

  146. 146

    Qiu, W. et al. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J. Mater. Chem. A 3, 22824–22829 (2015).

    Article  CAS  Google Scholar 

  147. 147

    Wu, Y. et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Expr. 7, 052301 (2014).

    Article  CAS  Google Scholar 

  148. 148

    Di Giacomo, F. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 5, 1401808 (2015).

    Article  CAS  Google Scholar 

  149. 149

    Yella, A., Heiniger, L.P., Gao, P., Nazeeruddin, M. K. & Grätzel, M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 14, 2591–2596 (2014).

    Article  CAS  Google Scholar 

  150. 150

    Fakharuddin, A. et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules. ACS Nano 9, 8420–8429 (2015).

    Article  CAS  Google Scholar 

  151. 151

    Su, T. S., Hsieh, T. Y., Hong, C. Y. & Wei, T. C. Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Sci. Rep. 5, 16098 (2015).

    Article  CAS  Google Scholar 

  152. 152

    Correa Baena, J. P. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015).

    Article  CAS  Google Scholar 

  153. 153

    Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016).

    Article  CAS  Google Scholar 

  154. 154

    Zhu, Z. et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 28, 6478–6484 (2016).

    Article  CAS  Google Scholar 

  155. 155

    Chen, J.Y., Chueh, C.C., Zhu, Z., Chen, W.C. & Jen, A. K. Y. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Sol. Energy Mater. Sol. Cells 164, 47–55 (2017).

    Article  CAS  Google Scholar 

  156. 156

    You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  CAS  Google Scholar 

  157. 157

    Chen, W. et al. Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci. 8, 629–640 (2015).

    Article  CAS  Google Scholar 

  158. 158

    Zhu, Z. et al. High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575 (2014).

    CAS  Google Scholar 

  159. 159

    Seo, S. et al. An ultra-thin, undoped NiO hole transporting layer of highly efficient (16.4%) organic–inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016).

    Article  CAS  Google Scholar 

  160. 160

    Wang, K. C. et al. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851–11858 (2014).

    Article  CAS  Google Scholar 

  161. 161

    Park, I. J. et al. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. ChemSusChem 10, 2660–2667 (2017).

    Article  CAS  Google Scholar 

  162. 162

    Zhang, H. et al. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10, 1503–1511 (2016).

    Article  CAS  Google Scholar 

  163. 163

    Hou, Y. et al. Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 28, 5112–5120 (2016).

    Article  CAS  Google Scholar 

  164. 164

    Yang, I. S. et al. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 32, 414–421 (2017).

    Article  CAS  Google Scholar 

  165. 165

    Qin, T. et al. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210–217 (2017).

    Article  CAS  Google Scholar 

  166. 166

    Fu, F. et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015).

    Article  CAS  Google Scholar 

  167. 167

    Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  CAS  Google Scholar 

  168. 168

    Chang, C.Y., Lee, K.T., Huang, W.K., Siao, H.Y. & Chang, Y.C. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 27, 5122–5130 (2015).

    Article  CAS  Google Scholar 

  169. 169

    Bryant, D. et al. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells. Adv. Mater. 26, 7499–7504 (2014).

    Article  CAS  Google Scholar 

  170. 170

    Wei, Z. et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 7, 3326–3333 (2014).

    Article  CAS  Google Scholar 

  171. 171

    You, P., Liu, Z., Tai, Q., Liu, S. & Yan, F. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27, 3632–3638 (2015).

    Article  CAS  Google Scholar 

  172. 172

    Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  CAS  Google Scholar 

  173. 173

    Hu, Y. et al. Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL 1, 1600019 (2017).

    Article  CAS  Google Scholar 

  174. 174

    Priyadarshi, A. et al. A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci. 9, 3687–3692 (2016).

    Article  CAS  Google Scholar 

  175. 175

    Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    Article  CAS  Google Scholar 

  176. 176

    Kim, H.S., Seo, J.Y. & Park, N.G. Material and device stability in perovskite solar cells. ChemSusChem 9, 2528–2540 (2016).

    Article  CAS  Google Scholar 

  177. 177

    Leijtens, T. et al. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483–11500 (2017).

    Article  CAS  Google Scholar 

  178. 178

    Yang, Y. & You, J. Make perovskite solar cells stable. Nature 544, 155–156 (2017).

    Article  CAS  Google Scholar 

  179. 179

    Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 3, 68–74 (2018). This study demonstrates the importance of the interfaces between the perovskite and charge-transport layers in determining the stability of PSCs.

    Article  CAS  Google Scholar 

  180. 180

    Manser, J. S., Saidaminov, M. I., Christians, J. A., Bakr, O. M. & Kamat, P. V. Making and breaking of lead halide perovskites. Accounts Chem. Res. 49, 330–338 (2016).

    Article  CAS  Google Scholar 

  181. 181

    Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    Article  CAS  Google Scholar 

  182. 182

    Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article  CAS  Google Scholar 

  183. 183

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  Google Scholar 

  184. 184

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  CAS  Google Scholar 

  185. 185

    Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).

    Article  CAS  Google Scholar 

  186. 186

    Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016).

    Article  CAS  Google Scholar 

  187. 187

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  Google Scholar 

  188. 188

    Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016).

    Article  CAS  Google Scholar 

  189. 189

    Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    Article  CAS  Google Scholar 

  190. 190

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  CAS  Google Scholar 

  191. 191

    Ono, L. K. et al. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J. Mater. Chem. A 3, 15451–15456 (2015).

    Article  CAS  Google Scholar 

  192. 192

    Li, Z. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10, 1234–1242 (2017).

    Article  CAS  Google Scholar 

  193. 193

    Leijtens, T. et al. Hydrophobic organic hole transporters for improved moisture resistance in metal halide perovskite solar cells. ACS Appl. Mater. Interfaces 8, 5981–5989 (2016).

    Article  CAS  Google Scholar 

  194. 194

    Kim, G.W. et al. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 9, 2326–2333 (2016).

    Article  CAS  Google Scholar 

  195. 195

    Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    Article  CAS  Google Scholar 

  196. 196

    Habisreutinger, S. N. et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014).

    Article  CAS  Google Scholar 

  197. 197

    Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015).

    Article  CAS  Google Scholar 

  198. 198

    Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

    Article  CAS  Google Scholar 

  199. 199

    Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  CAS  Google Scholar 

  200. 200

    Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  CAS  Google Scholar 

  201. 201

    Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  CAS  Google Scholar 

  202. 202

    Sanehira, E. M. et al. Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016).

    Article  CAS  Google Scholar 

  203. 203

    Bella, F. et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203–206 (2016).

    Article  CAS  Google Scholar 

  204. 204

    Bauer, J. et al. Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits. Phys. Status Solidi RRL 3, 40–42 (2009).

    Article  CAS  Google Scholar 

  205. 205

    Lee, J. E. et al. Investigation of damage caused by partial shading of CuInxGa(1–x)Se2 photovoltaic modules with bypass diodes. Prog. Photovolt. 24, 1035–1043 (2016).

    Article  CAS  Google Scholar 

  206. 206

    Rossander, L. H. et al. In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates. CrystEngComm 18, 5083–5088 (2016).

    Article  CAS  Google Scholar 

  207. 207

    Razza, S. et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J. Power Sources 277, 286–291 (2015).

    Article  CAS  Google Scholar 

  208. 208

    Song, Z. et al. Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping. Proc. SPIE 9561, 956107 (2015).

    Article  Google Scholar 

  209. 209

    Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  210. 210

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Article  CAS  Google Scholar 

  211. 211

    Mastroianni, S. et al. Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging. Nanoscale 7, 19653–19662 (2015).

    Article  CAS  Google Scholar 

  212. 212

    Hameiri, Z. et al. Photoluminescence and electroluminescence imaging of perovskite solar cells. Prog. Photovolt. 23, 1697–1705 (2015).

    Article  CAS  Google Scholar 

  213. 213

    Soufiani, A. M. et al. Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells. J. Appl. Phys. 120, 35702 (2016).

    Article  CAS  Google Scholar 

  214. 214

    Walter, D. et al. On the use of luminescence intensity images for quantified characterization of perovskite solar cells: spatial distribution of series resistance. Adv. Energy Mater. 8, 1701522 (2017).

    Article  CAS  Google Scholar 

  215. 215

    El-Hajje, G. et al. Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy Environ. Sci. 9, 2286–2294 (2016).

    Article  CAS  Google Scholar 

  216. 216

    Johnston, S. et al. Correlations of Cu(In, Ga)Se2 imaging with device performance, defects, and microstructural properties. J. Vac. Sci. Technol. A 30, 04111D (2012).

    Article  CAS  Google Scholar 

  217. 217

    Gerber, A. et al. Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. Sol. Energy Mater. Sol. Cells 135, 35–42 (2015).

    Article  CAS  Google Scholar 

  218. 218

    Song, Z. et al. A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017).

    Article  CAS  Google Scholar 

  219. 219

    Cai, M. et al. Cost-performance analysis of perovskite solar modules. Adv. Sci. 4, 1600269 (2017).

    Article  CAS  Google Scholar 

  220. 220

    Chang, N. L. et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog. Photovolt. 25, 390–405 (2017).

    Article  Google Scholar 

  221. 221

    Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).

    Article  CAS  Google Scholar 

  222. 222

    Zhao, Y., Nardes, A. M. & Zhu, K. Effective hole extraction using MoOxAl contact in perovskite CH3NH3PbI3 solar cells. Appl. Phys. Lett. 104, 213906 (2014).

    Article  CAS  Google Scholar 

  223. 223

    Kim, J. H., Williams, S. T., Cho, N., Chueh, C.C. & Jen, A. K. Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015).

    Article  CAS  Google Scholar 

  224. 224

    Kim, M. C. et al. Electro-spray deposition of a mesoporous TiO2 charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells. Nanoscale 7, 20725–20733 (2015).

    Article  CAS  Google Scholar 

  225. 225

    Mathies, F. et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J. Mater. Chem. A 4, 19207–19213 (2016).

    Article  CAS  Google Scholar 

  226. 226

    Xu, X. et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402–2408 (2015).

    Article  CAS  Google Scholar 

  227. 227

    Rong, Y. et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 8, 14555 (2017).

    Article  Google Scholar 

  228. 228

    Liou, Y.J., Hsiao, P.T., Chen, L.C., Chu, Y.Y. & Teng, H. Structure and electron-conducting ability of TiO2 films from electrophoretic deposition and paste-coating for dye-sensitized solar cells. J. Phys. Chem. C 115, 25580–25589 (2011).

    Article  CAS  Google Scholar 

  229. 229

    Wang, X. et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015).

    Article  CAS  Google Scholar 

  230. 230

    Wu, Y. et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016).

    Article  CAS  Google Scholar 

  231. 231

    Microquanta. Microquanta updated the record of perovskite module efficiency to 16%. Microquantahttp://2107081062.wezhan.us/newsitem/277909853 (2017).

Download references

Acknowledgements

The work was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, Limited Liability Company (LLC), the Manager and Operator of the National Renewable Energy Laboratory. The authors acknowledge support from the hybrid perovskite solar cell programme of the National Center for Photovoltaics, funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. T.R.K. and D.H.K. acknowledge support from the National Renewable Energy Laboratory’s Laboratory Directed Research and Development (LDRD) programme.

Author information

Affiliations

Authors

Contributions

Z.L. and K.Z. researched data for the article. Z.L., K.Z. and J.J.B. wrote the article. All authors made a substantial contribution to the discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Kai Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Klein, T., Kim, D. et al. Scalable fabrication of perovskite solar cells. Nat Rev Mater 3, 18017 (2018). https://doi.org/10.1038/natrevmats.2018.17

Download citation

Further reading