Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse

Abstract

Neuropsychiatric developmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia, are typically characterized by alterations in social behavior and have been linked to aberrant dendritic spine and synapse development. Here we show, using genetically engineered mice, that the Cdc42 GTPase-activating multiadaptor protein, NOMA-GAP, regulates autism-like social behavior in the mouse, as well as dendritic spine and synapse development. Surprisingly, we were unable to restore spine morphology or autism-associated social behavior in NOMA-GAP-deficient animals by Cre-mediated deletion of Cdc42 alone. Spine morphology can be restored in vivo by re-expression of wild-type NOMA-GAP or a mutant of NOMA-GAP that lacks the RhoGAP domain, suggesting that other signaling functions are involved. Indeed, we show that NOMA-GAP directly interacts with several MAGUK (membrane-associated guanylate kinase) proteins, and that this modulates NOMA-GAP activity toward Cdc42. Moreover, we demonstrate that NOMA-GAP is a major regulator of PSD-95 in the neocortex. Loss of NOMA-GAP leads to strong upregulation of serine 295 phosphorylation of PSD-95 and moreover to its subcellular mislocalization. This is associated with marked loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and defective synaptic transmission, thereby providing a molecular basis for autism-like social behavior in the absence of NOMA-GAP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM . Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zheng CY, Seabold GK, Horak M, Petralia RS . MAGUKs, synaptic development, and synaptic plasticity. Neuroscientist 2011; 17: 493–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C et al. Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet 2004; 75: 318–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zanni G, van Esch H, Bensalem A, Saillour Y, Poirier K, Castelnau L et al. A novel mutation in the DLG3 gene encoding the synapse-associated protein 102 (SAP102) causes non-syndromic mental retardation. Neurogenetics 2009; 11: 251–255.

    Article  PubMed  Google Scholar 

  5. Romorini S, Piccoli G, Jiang M, Grossano P, Tonna N, Passafaro M et al. A functional role of postsynaptic density-95-guanylate kinase-associated protein complex in regulating Shank assembly and stability to synapses. J Neurosci 2004; 24: 9391–9404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999; 23: 569–582.

    Article  CAS  PubMed  Google Scholar 

  7. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K et al. Binding of neuroligins to PSD-95. Science 1997; 277: 1511–1515.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL et al. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci USA 2013; 110: 9118–9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kunde SA, Rademacher N, Tzschach A, Wiedersberg E, Ullmann R, Kalscheuer VM et al. Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum Genet 2013; 132: 461–471.

    Article  PubMed  Google Scholar 

  10. Feyder M, Karlsson RM, Mathur P, Lyman M, Bock R, Momenan R et al. Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams' syndrome. Am J Psychiatry 2010; 167: 1508–1517.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Govek EE, Newey SE, Van Aelst L . The role of the Rho GTPases in neuronal development. Genes Dev 2005; 19: 1–49.

    Article  CAS  PubMed  Google Scholar 

  12. Bennett MR . Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95: 275–300.

    Article  CAS  PubMed  Google Scholar 

  13. Tolias KF, Duman JG, Um K . Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94: 133–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosario M, Schuster S, Juttner R, Parthasarathy S, Tarabykin V, Birchmeier W . Neocortical dendritic complexity is controlled during development by NOMA-GAP-dependent inhibition of Cdc42 and activation of cofilin. Genes Dev 2012; 26: 1743–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goebbels S, Bormuth I, Bode U, Hermanson O, Schwab MH, Nave KA . Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 2006; 44: 611–621.

    Article  CAS  PubMed  Google Scholar 

  16. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 2012; 486: 256–260.

    Article  CAS  PubMed  Google Scholar 

  17. Crawley JN . Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 2007; 17: 448–459.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Silverman JL, Yang M, Lord C, Crawley JN . Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010; 11: 490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 2004; 3: 287–302.

    Article  CAS  PubMed  Google Scholar 

  20. Ebert DH, Greenberg ME . Activity-dependent neuronal signalling and autism spectrum disorder. Nature 2013; 493: 327–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu H, Nakazawa T, Tezuka T, Yamamoto T . Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP. J Biol Chem 2006; 281: 23611–23619.

    Article  CAS  PubMed  Google Scholar 

  22. Araya R, Vogels TP, Yuste R . Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proc Natl Acad Sci USA 2014; 111: E2895–E2904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Araya R, Jiang J, Eisenthal KB, Yuste R . The spine neck filters membrane potentials. Proc Natl Acad Sci USA 2006; 103: 17961–17966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simkus CR, Stricker C . Properties of mEPSCs recorded in layer II neurones of rat barrel cortex. J Physiol 2002; 545: 509–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stein V, House DR, Bredt DS, Nicoll RA . Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J Neurosci 2003; 23: 5503–5506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosario M, Franke R, Bednarski C, Birchmeier W . The neurite outgrowth multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 and Cdc42. J Cell Biol 2007; 178: 503–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim Y, Ha CM, Chang S . SNX26, a GTPase-activating protein for Cdc42, interacts with PSD-95 protein and is involved in activity-dependent dendritic spine formation in mature neurons. J Biol Chem 2013; 288: 29453–29466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McGee AW, Bredt DS . Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. J Biol Chem 1999; 274: 17431–17436.

    Article  CAS  PubMed  Google Scholar 

  29. Shin H, Hsueh YP, Yang FC, Kim E, Sheng M . An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90. J Neurosci 2000; 20: 3580–3587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rademacher N, Kunde SA, Kalscheuer VM, Shoichet SA . Synaptic MAGUK multimer formation is mediated by PDZ domains and promoted by ligand binding. Chem Biol 2013; 20: 1044–1054.

    Article  CAS  PubMed  Google Scholar 

  31. Nada S, Shima T, Yanai H, Husi H, Grant SG, Okada M et al. Identification of PSD-93 as a substrate for the Src family tyrosine kinase Fyn. J Biol Chem 2003; 278: 47610–47621.

    Article  CAS  PubMed  Google Scholar 

  32. Jaffe H, Vinade L, Dosemeci A . Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem Biophys Res Commun 2004; 321: 210–218.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Petit CM, King DS, Lee AL . Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK). J Biol Chem 2011; 286: 41776–41785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M . Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 2007; 56: 488–502.

    Article  CAS  PubMed  Google Scholar 

  35. Perez de, Arce K, Varela-Nallar L, Farias O, Cifuentes A, Bull P, Couch BA et al. Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation. J Neurosci 2010; 30: 3728–3738.

    Article  Google Scholar 

  36. Yudowski GA, Olsen O, Adesnik H, Marek KW, Bredt DS . Acute inactivation of PSD-95 destabilizes AMPA receptors at hippocampal synapses. PLoS One 2013; 8: e53965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kulkarni VA, Firestein BL . The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50: 10–20.

    Article  CAS  PubMed  Google Scholar 

  38. Sachs G, Steger-Wuchse D, Kryspin-Exner I, Gur RC, Katschnig H . Facial recognition deficits and cognition in schizophrenia. Schizophr Res 2004; 68: 27–35.

    Article  PubMed  Google Scholar 

  39. Sigman M, Spence SJ, Wang AT . Autism from developmental and neuropsychological perspectives. Annu Rev Clin Psychol 2006; 2: 327–355.

    Article  PubMed  Google Scholar 

  40. Seeman MV, Lang M . The role of estrogens in schizophrenia gender differences. Schizophr Bull 1990; 16: 185–194.

    Article  CAS  PubMed  Google Scholar 

  41. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R . Why are autism spectrum conditions more prevalent in males? PLoS Biol 2011; 9: e1001081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004; 36: 725–731.

    Article  CAS  PubMed  Google Scholar 

  43. Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012; 32: 6525–6541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gotham K, Bishop SL, Hus V, Huerta M, Lund S, Buja A et al. Exploring the relationship between anxiety and insistence on sameness in autism spectrum disorders. Autism Res 2012; 6: 33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  45. American Psychiatric Association, Kernberg. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, 2013. American Psychiatric Publishing Inc, Arlington, VA, USA.

  46. Hanse E, Seth H, Riebe I . AMPA-silent synapses in brain development and pathology. Nat Rev Neurosci 2010; 14: 839–850.

    Article  Google Scholar 

  47. Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA . Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA 2002; 99: 13902–13907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beique JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL . Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci USA 2006; 103: 19535–19540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bats C, Groc L, Choquet D . The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 2007; 53: 719–734.

    Article  CAS  PubMed  Google Scholar 

  50. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001; 98: 161–167.

    CAS  PubMed  Google Scholar 

  51. Ehrlich I, Malinow R . Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 2004; 24: 916–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ehrlich I, Klein M, Rumpel S, Malinow R . PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 2007; 104: 4176–4181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mondin M, Labrousse V, Hosy E, Heine M, Tessier B, Levet F et al. Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J Neurosci 2011; 31: 13500–13515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Sudhof TC . Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013; 154: 75–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen PC, Xu DF, Liu JW, Li K, Lin M, Wang HT et al. TC10beta/CDC42 GTPase activating protein is required for the growth of cortical neuron dendrites. Neuroscience 2011; 199: 589–597.

    Article  CAS  PubMed  Google Scholar 

  56. Tashiro A, Minden A, Yuste R . Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 2000; 10: 927–938.

    Article  CAS  PubMed  Google Scholar 

  57. Vadodaria KC, Brakebusch C, Suter U, Jessberger S . Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis. J Neurosci 2013; 33: 1179–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim IH, Wang H, Soderling SH, Yasuda R . Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. eLife 2014; 3: e02839.

    Article  PubMed Central  Google Scholar 

  59. Murakoshi H, Wang H, Yasuda R . Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 2011; 472: 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E Tarland for valuable technical support with the animal behavior experiments and for Supplementary Figure S4A and J Schüler for advice on microscopy and E Bessa for help during the revision process. This study was supported by the DFG: RO3497/3-1 (M Rosário); EXC257 NeuroCure (M Rivalan, YW, NR, SAS and VT); SFB665 and Heisenberg program (VT). In addition, SS was funded by the Charité PhD Scholarship and equipment used by US was partially funded by the Sonnenfeld Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Rosário.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, S., Rivalan, M., Strauss, U. et al. NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol Psychiatry 20, 1120–1131 (2015). https://doi.org/10.1038/mp.2015.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.42

This article is cited by

Search

Quick links