Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

CITED2-mediated human hematopoietic stem cell maintenance is critical for acute myeloid leukemia

Abstract

As the transcriptional coactivator CITED2 (CBP/p300-interacting-transactivator-with-an ED-rich-tail 2) can be overexpressed in acute myeloid leukemia (AML) cells, we analyzed the consequences of high CITED2 expression in normal and AML cells. CITED2 overexpression in normal CD34+ cells resulted in enhanced hematopoietic stem and progenitor cell (HSPC) output in vitro, as well as in better hematopoietic stem cell (HSC) engraftability in NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice. This was because of an enhanced quiescence and maintenance of CD34+CD38 HSCs, due in part to an increased expression of the cyclin-dependent kinase inhibitor CDKN1A. We demonstrated that PU.1 is a critical regulator of CITED2, as PU.1 repressed CITED2 expression in a DNA methyltransferase 3A/B (DNMT3A/B)-dependent manner in normal CD34+ cells. CD34+ cells from a subset of AML patients displayed higher expression levels of CITED2 as compared with normal CD34+ HSPCs, and knockdown of CITED2 in AML CD34+ cells led to a loss of long-term expansion, both in vitro and in vivo. The higher CITED2 expression resulted from reduced PU.1 activity and/or dysfunction of mutated DNMT3A/B. Collectively, our data demonstrate that increased CITED2 expression results in better HSC maintenance. In concert with low PU.1 levels, this could result in a perturbed myeloid differentiation program that contributes to leukemia maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yoon H, Lim J-H, Cho C-H, Huang LE, Park J-W . CITED2 controls the hypoxic signaling by snatching p300 from the two distinct activation domains of HIF-1α. Biochim Biophys Acta 2011; 1813: 2008–2016.

    Article  CAS  PubMed  Google Scholar 

  2. Kranc KR, Schepers H, Rodrigues NP, Bamforth S, Villadsen E, Ferry H et al. Cited2 is an essential regulator of adult hematopoietic stem cells. Cell Stem Cell 2009; 5: 659–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kranc KR, Bamforth SD, Bragança J, Norbury C, Van Lohuizen M, Bhattacharya S . Transcriptional coactivator Cited2 induces Bmi1 and Mel18 and controls fibroblast proliferation via Ink4a/ARF. Mol Cell Biol 2003; 23: 7658–7666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berlato C, Chan KV, Price AM, Canosa M, Scibetta AG, Hurst HC . Alternative TFAP2A isoforms have distinct activities in breast cancer. Breast Cancer Res 2011; 13: R23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chou Y-T, Hsieh C-H, Chiou S-H, Hsu C-F, Kao Y-R, Lee C-C et al. CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence. Cell Death Differ 2012; 19: 2015–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersson A, Ritz C, Lindgren D, Edén P, Lassen C, Heldrup J et al. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia 2007; 21: 1198–1203.

    Article  CAS  PubMed  Google Scholar 

  7. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 2007; 21: 494–504.

    Article  CAS  PubMed  Google Scholar 

  9. Bakker W, Harris I, Mak T . FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell 2007; 28: 941–953.

    Article  CAS  PubMed  Google Scholar 

  10. Bakker W, van Dijk T, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P et al. Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol 2007; 27: 3839–3854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cook W, McCaw B, Herring C, John D, Foote S, Nutt S et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 2004; 104: 3437–3444.

    Article  CAS  PubMed  Google Scholar 

  12. Tenen D . Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003; 3: 89–101.

    Article  CAS  PubMed  Google Scholar 

  13. Vangala R, Heiss-Neumann M, Rangatia J, Singh S, Schoch C, Tenen D et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270–277.

    Article  CAS  PubMed  Google Scholar 

  14. Laricchia-Robbio L, Premanand K, Rinaldi C, Nucifora G . EVI1 impairs myelopoiesis by deregulation of PU.1 function. Cancer Res 2009; 69: 1633–1642.

    Article  CAS  PubMed  Google Scholar 

  15. Walter M, Park J, Ries R, Lau S, McLellan M, Jaeger S et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA 2005; 102: 12513–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang H, Liang H, Yan J-S, Tao R, Hao S-G, Ma L-Y . Down-regulation of hematopoiesis master regulator PU.1 via aberrant methylation in chronic myeloid leukemia. Int J Hematol 2012; 96: 65–73.

    Article  CAS  PubMed  Google Scholar 

  17. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenbauer F, Wagner K, Kutok J, Iwasaki H, Le Beau M, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  19. Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S . Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 1486–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Houston IB, Kamath MB, Schweitzer BL, Chlon TM, DeKoter RP . Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol 2007; 35: 1056–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aue G, Du Y, Cleveland SM, Smith SB, Davé UP, Liu D et al. Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia. Blood 2011; 118: 4674–4681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schepers H, van Gosliga D, Wierenga ATJ, Eggen BJL, Schuringa JJ, Vellenga E . STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood 2007; 110: 2880–2888.

    Article  CAS  PubMed  Google Scholar 

  23. Schepers H, Wierenga ATJ, van Gosliga D, Eggen BJL, Vellenga E, Schuringa JJ . Reintroduction of C/EBPalpha in leukemic CD34+ stem/progenitor cells impairs self-renewal and partially restores myelopoiesis. Blood 2007; 110: 1317–1325.

    Article  CAS  PubMed  Google Scholar 

  24. Leung MK, Jones T, Michels CL, Livingston DM, Bhattacharya S . Molecular cloning and chromosomal localization of the human CITED2 gene encoding p35srj/Mrg1. Genomics 1999; 61: 307–313.

    Article  CAS  PubMed  Google Scholar 

  25. Bhattacharya S, Michels C, Leung M, Arany Z, Kung A, Livingston D . Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev 1999; 13: 64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van den Boom V, Rozenveld-Geugien M, Bonardi F, Malanga D, van Gosliga D, Heijink AM et al. Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood 2013; 121: 2452–2461.

    Article  CAS  PubMed  Google Scholar 

  27. Majeti R, Park CY, Weissman IL . Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 2007; 1: 635–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du J, Chen Y, Li Q, Han X, Cheng C, Wang Z et al. HIF-1α deletion partially rescues defects of hematopoietic stem cell quiescence caused by Cited2 deficiency. Blood 2012; 119: 2789–2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki M, Yamada T, Kihara-Negishi F, Sakurai T, Hara E, Tenen DG et al. Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 2006; 25: 2477–2488.

    Article  CAS  PubMed  Google Scholar 

  31. Li J-Y, Pu M-T, Hirasawa R, Li B-Z, Huang Y-N, Zeng R et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 2007; 27: 8748–8759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23–31.

    Article  CAS  Google Scholar 

  34. Bagger FO, Rapin N, Theilgaard-Mönch K, Kaczkowski B, Thoren LA, Jendholm J et al. HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis. Nucleic Acids Res 2013; 41: D1034–D1039.

    Article  CAS  PubMed  Google Scholar 

  35. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138–152.

    Article  CAS  PubMed  Google Scholar 

  36. van Gosliga D, Schepers H, Rizo A, van der Kolk D, Vellenga E, Schuringa JJ . Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells. Exp Hematol 2007; 35: 1538–1549.

    Article  CAS  PubMed  Google Scholar 

  37. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y et al. P57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 2011; 9: 262–271.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  39. Steidl U, Rosenbauer F, Verhaak RGW, Gu X, Ebralidze A, Otu HH et al. Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nat Genet 2006; 38: 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  40. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  41. Galm O, Herman JG, Baylin SB . The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 2006; 20: 1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D . A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 1985; 40: 91–99.

    Article  CAS  PubMed  Google Scholar 

  43. Valk P, Verhaak R, Beijen M, Erpelinck C, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer J et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  44. Graham SM, Vass JK, Holyoake TL, Graham GJ . Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources. Stem Cells 2007; 25: 3111–3120.

    Article  CAS  PubMed  Google Scholar 

  45. Takeda A, Goolsby C, Yaseen NR . NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells. Cancer Res 2006; 66: 6628–6637.

    Article  CAS  PubMed  Google Scholar 

  46. Tonks A, Pearn L, Musson M, Gilkes A, Mills KI, Burnett AK et al. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007; 21: 2495–2505.

    Article  CAS  PubMed  Google Scholar 

  47. Verhaak RGW, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge RJ van der Lei, H Moes and G Mesander for help with flow cytometry, and Amgen Inc. and Kirin for providing cytokines. We greatly appreciate the help of Dr A van Loon, Dr JJ Erwich and colleagues (Obstetrics departments from the Martini Hospital and UMCG) for collecting CB, Dr AB Mulder (Department of Laboratory Medicine) and Professor E van den Berg (Department of Genetics) for mutation analyzes and A Brouwers-Vos (Department of Experimental Hematology) for help with Illumina Bead Arrays. We also thank Dr T Plosch and M Zwiers from the Department of Obstetrics and Gynecology for their help with the pyrosequencing. This work was funded by an NWO VENI grant (91611105) awarded to HS.

Author Contributions

PMK, GB, BB, MR, JJ and HS performed experiments and analyzed data. GdH, JJS, EV and HS analyzed and discussed data. JJS, EV and HS designed the experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Schepers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korthuis, P., Berger, G., Bakker, B. et al. CITED2-mediated human hematopoietic stem cell maintenance is critical for acute myeloid leukemia. Leukemia 29, 625–635 (2015). https://doi.org/10.1038/leu.2014.259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.259

This article is cited by

Search

Quick links