Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

SETBP1 is dispensable for normal and malignant hematopoiesis

Abstract

SETBP1 is a potential epigenetic regulator whose hotspot mutations preventing proteasomal degradation are recurrently detected in myeloid malignancies with poor prognosis. It is believed that the mutant SETBP1 exerts amplified effects of wild-type SETBP1 rather than neomorphic functions. This indicates that dysregulated quantitative control of SETBP1 would result in the transformation of hematopoietic cells. However, little is known about the roles of endogenous SETBP1 in malignant and normal hematopoiesis. Thus, we integrated the analyses of primary AML and healthy samples, cancer cell lines, and a newly generated murine model, Vav1-iCre;Setbp1fl/fl. Despite the expression in long-term hematopoietic stem cells, SETBP1 depletion in normal hematopoiesis minimally alters self-renewal, differentiation, or reconstitution in vivo. Indeed, its loss does not profoundly alter transcription or chromatin accessibilities. Furthermore, although AML with high SETBP1 mRNA is associated with genetic and clinical characteristics for dismal outcomes, SETBP1 is dispensable for the development or maintenance of AML. Contrary to the evidence that SETBP1 mutations are restricted to myeloid malignancies, dependency on SETBP1 mRNA expression is not observed in AML. These unexpected results shed light on the unrecognized idea that a physiologically nonessential gene can act as an oncogene when the machinery of protein degradation is damaged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of SETBP1 expression in malignant and normal hematopoiesis.
Fig. 2: Generation and phenotypic characterization of hematopoietic cell-specific Setbp1 KO mice.
Fig. 3: The Setbp1 depletion had limited effects on the repopulating capacity and the fitness of HSCs.
Fig. 4: Setbp1 KO induced minimal effects on gene expression or chromatin accessibility.
Fig. 5: AML cells are not dependent on SETBP1 for their survival.

Similar content being viewed by others

Data availability

RNA-seq data generated by Beat AML (dbGaP accession phs001657.v1.p1) were downloaded from the National Cancer Institute’s Genomic Data Commons. The RNA-seq data generated in this study were deposited in Sequence Read Archive under BioProject ID: PRJNA898600 and PRJNA974068, and the ATAC-seq data under BioProject ID: PRJNA898579 and PRJNA974069.

References

  1. Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J, et al. SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood. 2010;115:615–25.

    Article  CAS  PubMed  Google Scholar 

  2. Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45:942–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shou LH, Cao D, Dong XH, Fang Q, Wu Y, Zhang Y, et al. Prognostic significance of SETBP1 mutations in myelodysplastic syndromes, chronic myelomonocytic leukemia, and chronic neutrophilic leukemia: A meta-analysis. PLoS One. 2017;12:e0171608.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45:18–24.

    Article  CAS  PubMed  Google Scholar 

  5. Carratt SA, Braun TP, Coblentz C, Schonrock Z, Callahan R, Curtiss BM, et al. Mutant SETBP1 enhances NRAS-driven MAPK pathway activation to promote aggressive leukemia. Leukemia. 2021;35:3594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carratt SA, Kong GL, Curtiss BM, Schonrock Z, Maloney L, Maniaci BN, et al. Mutated SETBP1 activates transcription of Myc programs to accelerate CSF3R-driven myeloproliferative neoplasms. Blood. 2022;140:644–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saika M, Inoue D, Nagase R, Sato N, Tsuchiya A, Yabushita T, et al. ASXL1 and SETBP1 mutations promote leukaemogenesis by repressing TGFbeta pathway genes through histone deacetylation. Sci Rep. 2018;8:15873.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A, et al. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 2015;29:847–57.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen N, Vishwakarma BA, Oakley K, Han Y, Przychodzen B, Maciejewski JP, et al. Myb expression is critical for myeloid leukemia development induced by Setbp1 activation. Oncotarget. 2016;7:86300–12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oakley K, Han Y, Vishwakarma BA, Chu S, Bhatia R, Gudmundsson KO, et al. Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10. Blood. 2012;119:6099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vishwakarma BA, Nguyen N, Makishima H, Hosono N, Gudmundsson KO, Negi V, et al. Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development. Leukemia. 2016;30:200–8.

    Article  CAS  PubMed  Google Scholar 

  12. Piazza R, Magistroni V, Redaelli S, Mauri M, Massimino L, Sessa A, et al. SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub. Nat Commun. 2018;9:2192.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nguyen N, Gudmundsson KO, Soltis AR, Oakley K, Roy KR, Han Y, et al. Recruitment of MLL1 complex is essential for SETBP1 to induce myeloid transformation. iScience. 2022;25:103679.

    Article  CAS  PubMed  Google Scholar 

  14. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004;18:2747–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G, et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood. 2005;106:3988–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S, et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell. 2008;3:207–20.

    Article  CAS  PubMed  Google Scholar 

  17. S, Morita T, Kojima T, Kitamura. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy 2000;71063–6.

  18. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  Google Scholar 

  19. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  20. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Awada H, Durmaz A, Gurnari C, Kishtagari A, Meggendorfer M, Kerr CM, et al. Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia. Blood. 2021;138:1885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gardin C, Pautas C, Fournier E, Itzykson R, Lemasle E, Bourhis JH, et al. Added prognostic value of secondary AML-like gene mutations in ELN intermediate-risk older AML: ALFA-1200 study results. Blood Adv. 2020;4:1942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richardson DR, Swoboda DM, Moore DT, Johnson SM, Chan O, Galeotti J, et al. Genomic characteristics and prognostic significance of co-mutated ASXL1/SRSF2 acute myeloid leukemia. Am J Hematol. 2021;96:462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Werf I, Wojtuszkiewicz A, Meggendorfer M, Hutter S, Baer C, Heymans M, et al. Splicing factor gene mutations in acute myeloid leukemia offer additive value if incorporated in current risk classification. Blood Adv. 2021;5:3254–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  29. Inoue D, Bradley RK, Abdel-Wahab O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev. 2016;30:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB, et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood. 2015;125:516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palomo L, Meggendorfer M, Hutter S, Twardziok S, Adema V, Fuhrmann I, et al. Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood. 2020;136:1851–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yin B, Chen X, Gao F, Li J, Wang HW. Analysis of gene mutation characteristics in patients with chronic neutrophilic leukaemia. Hematology. 2019;24:538–43.

    Article  CAS  PubMed  Google Scholar 

  33. Kataoka K, Sato T, Yoshimi A, Goyama S, Tsuruta T, Kobayashi H, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med. 2011;208:2403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 2005;24:1976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He C, Hu H, Braren R, Fong SY, Trumpp A, Carlson TR, et al. c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development. 2008;135:2467–77.

    Article  CAS  PubMed  Google Scholar 

  36. Georgiades P, Ogilvy S, Duval H, Licence DR, Charnock-Jones DS, Smith SK, et al. VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis. 2002;34:251–6.

    Article  CAS  PubMed  Google Scholar 

  37. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002;298:601–4.

    Article  CAS  PubMed  Google Scholar 

  38. Goyama S, Shrestha M, Schibler J, Rosenfeldt L, Miller W, O'Brien E, et al. Protease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemia. Oncogene. 2017;36:2589–98.

    Article  CAS  PubMed  Google Scholar 

  39. Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209:1553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2012;119:521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silkenstedt E, Arenas F, Colom-Sanmarti B, Xargay-Torrent S, Higashi M, Giro A, et al. Notch1 signaling in NOTCH1-mutated mantle cell lymphoma depends on Delta-Like ligand 4 and is a potential target for specific antibody therapy. J Exp Clin Cancer Res. 2019;38:446.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.

    Article  CAS  PubMed  Google Scholar 

  44. Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, et al. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014;25:415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157:369–81.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka A, Nakano TA, Nomura M, Yamazaki H, Bewersdorf JP, Mulet-Lazaro R, et al. Aberrant EVI1 splicing contributes to EVI1-rearranged leukemia. Blood. 2022;140:875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Banfi F, Rubio A, Zaghi M, Massimino L, Fagnocchi G, Bellini E, et al. SETBP1 accumulation induces P53 inhibition and genotoxic stress in neural progenitors underlying neurodegeneration in Schinzel-Giedion syndrome. Nat Commun. 2021;12:4050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

DI is supported by American Society of Hematology, Japanese Society of Hematology, The Naito Foundation, The Uehara Memorial Foundation, KAKETSUKEN, The Princess Takamatsu Cancer Research Fund, SGH Foundation, The Mother and Child Health Foundation, Kato Memorial Bioscience Foundation, JSPS KAKENHI (23H00430, JP20H00537 and JP20H03717) and the Japan Agency for Medical Research and Development (AMED) (21ck0106697h0001). AT is supported by JSPS KAKENHI (JP21J15620). Other financial support includes Grant-in-Aid for Scientific Research (MEXT/JSPS KAKENHI JP19H05656 (SO), JP26221308 (SO), JP21K08394 (AK), JP18K16084 (AK)), AMED (JP21cm0106501h0006 (SO), JP22ama221508h0001 (AK)).

Author information

Authors and Affiliations

Authors

Contributions

AT, KN, and DI designed the study; KA, JT, HT, MNakayama, MM, HK, and SO established Setbp1 conditional knock-out mice. MNomura and DI performed computational analyses of clinical information; WZ, MNomura, and DI performed computational analyses of RNA-seq and ATAC-seq data; AT, YK, WZ, HY, MF, WS, HI, YH, HK, TK, AT-K, and DI performed animal experiments; AT, MNomura, MNakayama, MM, WZ, and DI wrote the manuscript with approval from all co-authors.

Corresponding author

Correspondence to Daichi Inoue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, A., Nishimura, K., Saika, W. et al. SETBP1 is dispensable for normal and malignant hematopoiesis. Leukemia 37, 1802–1811 (2023). https://doi.org/10.1038/s41375-023-01970-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01970-5

Search

Quick links