Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21

Abstract

The cell cycle progression of hematopoietic stem cells (HSCs) and acute myeloid leukemia (AML) cells is precisely controlled by multiple regulatory factors. However, the underlying mechanisms are not fully understood. Here, we find that cyclin-dependent kinase 19 (CDK19), not its paralogue CDK8, is relatively enriched in mouse HSCs, and its expression is more significantly increased than CDK8 after proliferative stresses. Furthermore, SenexinB (a CDK8/19 inhibitor) treatment impairs the proliferation and self-renewal ability of HSCs. Moreover, overexpression of CDK19 promotes HSC function better than CDK8 overexpression. Using CDK19 knockout mice, we observe that CDK19−/− HSCs exhibit similar phenotypes to those of cells treated with SenexinB. Interestingly, the p53 signaling pathway is significantly activated in HSCs lacking CDK19 expression. Further investigations show that CDK19 can interact with p53 to inhibit p53-mediated transcription of p21 in HSCs and treatment with a specific p53 inhibitor (PFTβ) partially rescues the defects of CDK19-null HSCs. Importantly, SenexinB treatment markedly inhibits the proliferation of AML cells. Collectively, our findings indicate that CDK19 is involved in regulating HSC and AML cell proliferation via the p53-p21 pathway, revealing a new mechanism underlying cell cycle regulation in normal and malignant hematopoietic cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDK19 expression is upregulated in HSCs after exposure to stresses that induce proliferation.
Fig. 2: SenexinB (CDK8/19 inhibitor) treatment attenuates the proliferation and function of HSCs.
Fig. 3: Overexpression of CDK19 promotes the proliferation of HSCs.
Fig. 4: CDK19 deficiency impairs the proliferation and hematopoietic repopulation ability of HSCs in a cell-intrinsic manner.
Fig. 5: CDK19 regulates the cell cycle profile of HSCs.
Fig. 6: CDK19 inhibits the expression of p21 via a p53-dependent mechanism.
Fig. 7: p53 inhibitor treatment rescues the impaired phenotype and function of CDK19−/− HSCs.
Fig. 8: SenexinB treatment potently attenuates the proliferation of AML cells.

Similar content being viewed by others

References

  1. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16:302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11:34–44.

    Article  PubMed  Google Scholar 

  3. Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell. 2008;2:380–91.

    Article  CAS  PubMed  Google Scholar 

  4. Blank U, Karlsson S. TGF-beta signaling in the control of hematopoietic stem cells. Blood. 2015;125:3542–50.

    Article  CAS  PubMed  Google Scholar 

  5. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I. et al. An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell. 2018;22:879–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh SK, Singh S, Gadomski S, Sun L, Pfannenstein A, Magidson V, et al. Id1 ablation protects hematopoietic stem cells from stress-induced exhaustion and aging. Cell Stem Cell. 2018;23:252–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Chen Y, Deng X, Zhou J. ATF3 prevents stress-induced hematopoietic stem cell exhaustion. Front Cell Dev Biol. 2020;8:585771.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang N, Yin J, You N, Yang S, Guo D, Zhao Y, et al. TWIST1 preserves hematopoietic stem cell function via the CACNA1B/Ca2+/mitochondria axis. Blood. 2021;137:2907–19.

    Article  CAS  PubMed  Google Scholar 

  9. Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell. 2004;118:477–91.

    Article  CAS  PubMed  Google Scholar 

  10. Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan AS, Prchal-Murphy M, Heller G, et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood. 2015;125:90–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287:1804–8.

    Article  CAS  PubMed  Google Scholar 

  12. Zou P, Yoshihara H, Hosokawa K, Tai I, Shinmyozu K, Tsukahara F, et al. p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9:247–61.

    Article  CAS  PubMed  Google Scholar 

  13. Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA. The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol. 2010;12:1213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gudmundsson KO, Nguyen N, Oakley K, Han Y, Gudmundsdottir B, Liu P, et al. Prdm16 is a critical regulator of adult long-term hematopoietic stem cell quiescence. Proc Natl Acad Sci USA. 2020;117:31945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia W, Kong L, Kidoya H, Naito H, Muramatsu F, Hayashi Y, et al. Indispensable role of Galectin-3 in promoting quiescence of hematopoietic stem cells. Nat Commun. 2021;12:2118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15:122.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dannappel MV, Sooraj D, Loh JJ, Firestein R. Molecular and in vivo functions of the CDK8 and CDK19 kinase modules. Front Cell Dev Biol. 2018;6:171.

    Article  PubMed  Google Scholar 

  18. Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription. 2010;1:4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK, Qin B, et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell. 2013;153:1327–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelish HE, Liau BB. Nitulescu, II, Tangpeerachaikul A, Poss ZC, Da Silva DH, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature. 2015;526:273–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, Li C, et al. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc Natl Acad Sci USA. 2014;111:2500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steinparzer I, Sedlyarov V, Rubin JD, Eislmayr K, Galbraith MD, Levandowski CB, et al. Transcriptional Responses to IFN-gamma Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Mol Cell. 2019;76:485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westerling T, Kuuluvainen E, Makela TP. Cdk8 is essential for preimplantation mouse development. Mol Cell Biol. 2007;27:6177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura A, Nakata D, Kakoi Y, Kunitomo M, Murai S, Ebara S, et al. CDK8/19 inhibition induces premature G1/S transition and ATR-dependent cell death in prostate cancer cells. Oncotarget. 2018;9:13474–87.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Audetat KA, Galbraith MD, Odell AT, Lee T, Pandey A, Espinosa JM, et al. A Kinase-Independent Role for Cyclin-Dependent Kinase 19 in p53 Response. Mol Cell Biol. 2017;37:e00626–16.

  26. Xu Y, Wang S, Shen M, Zhang Z, Chen S, Chen F, et al. hGH promotes megakaryocyte differentiation and exerts a complementary effect with c-Mpl ligands on thrombopoiesis. Blood. 2014;123:2250–60.

    Article  CAS  PubMed  Google Scholar 

  27. Hu M, Zeng H, Chen S, Xu Y, Wang S, Tang Y, et al. SRC-3 is involved in maintaining hematopoietic stem cell quiescence by regulation of mitochondrial metabolism in mice. Blood. 2018;132:911–23.

    Article  CAS  PubMed  Google Scholar 

  28. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, et al. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell. 2017;169:807–23.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawa MM, Rathinam CV. Constitutive activation of the canonical NF-kappaB pathway leads to bone marrow failure and induction of erythroid signature in hematopoietic stem cells. Cell Rep. 2018;25:2094–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35:314–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ono K, Banno H, Okaniwa M, Hirayama T, Iwamura N, Hikichi Y, et al. Design and synthesis of selective CDK8/19 dual inhibitors: Discovery of 4,5-dihydrothieno[3′,4′:3,4]benzo[1,2-d]isothiazole derivatives. Bioorg Med Chem. 2017;25:2336–50.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson NK, Schoenfelder S, Hannah R, Sanchez Castillo M, Schutte J, Ladopoulos V, et al. Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model. Blood. 2016;127:e12–23.

    Article  CAS  PubMed  Google Scholar 

  33. Leonova KI, Shneyder J, Antoch MP, Toshkov IA, Novototskaya LR, Komarov PG, et al. A small molecule inhibitor of p53 stimulates amplification of hematopoietic stem cells but does not promote tumor development in mice. Cell Cycle. 2010;9:1434–43.

    Article  CAS  PubMed  Google Scholar 

  34. Bungartz G, Land H, Scadden DT, Emerson SG. NF-Y is necessary for hematopoietic stem cell proliferation and survival. Blood. 2012;119:1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol. 2015;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Matsumoto A, Nakayama KI. Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells. Biochim Biophys Acta. 2013;1830:2335–44.

    Article  CAS  PubMed  Google Scholar 

  37. Miyata Y, Liu Y, Jankovic V, Sashida G, Lee JM, Shieh JH, et al. Cyclin C regulates human hematopoietic stem/progenitor cell quiescence. Stem Cells. 2010;28:308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu H, Yuan Y, Shen H, Cheng T. Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood. 2006;107:1200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsutsui T, Fukasawa R, Tanaka A, Hirose Y, Ohkuma Y. Identification of target genes for the CDK subunits of the Mediator complex. Genes Cells. 2011;16:1208–18.

    Article  CAS  PubMed  Google Scholar 

  40. Kalaszczynska I, Geng Y, Iino T, Mizuno S, Choi Y, Kondratiuk I, et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell. 2009;138:352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y, et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2011;9:262–71.

    Article  CAS  PubMed  Google Scholar 

  42. Filippi MD, Ghaffari S. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood. 2019;133:1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang T, Nandakumar V, Jiang XX, Jones L, Yang AG, Huang XF, et al. The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood. 2013;122:2812–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135:1118–29.

    Article  CAS  PubMed  Google Scholar 

  45. Foudi A, Hochedlinger K, Van Buren D, Schindler JW, Jaenisch R, Carey V, et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol. 2009;27:84–90.

    Article  CAS  PubMed  Google Scholar 

  46. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125:2605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shao L, Elujoba-Bridenstine A, Zink KE, Sanchez LM, Cox BJ, Pollok KE, et al. The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood. 2021;137:775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nita A, Muto Y, Katayama Y, Matsumoto A, Nishiyama M, Nakayama KI. The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Rep. 2021;34:108688.

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi M, Bai Y, Dong Y, Yu H, Chen S, Gao R, et al. PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal. Stem Cells. 2014;32:1956–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bondar T, Medzhitov R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell. 2010;6:309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell. 2009;4:37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Asai T, Liu Y, Di Giandomenico S, Bae N, Ndiaye-Lobry D, Deblasio A, et al. Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells. Blood. 2012;120:1601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431:1002–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wang T, Xia C, Weng Q, Wang K, Dong Y, Hao S, et al. Loss of Nupr1 promotes engraftment by tuning the quiescence threshold of hematopoietic stem cell repository via regulating p53-checkpoint pathway. Haematologica. 2022;107:154–66.

    Article  PubMed  Google Scholar 

  55. Sinha S, Dwivedi TR, Yengkhom R, Bheemsetty VA, Abe T, Kiyonari H, et al. Asrij/OCIAD1 suppresses CSN5-mediated p53 degradation and maintains mouse hematopoietic stem cell quiescence. Blood. 2019;133:2385–2400.

    Article  CAS  PubMed  Google Scholar 

  56. Hua WK, Qi J, Cai Q, Carnahan E, Ayala Ramirez M, Li L, et al. HDAC8 regulates long-term hematopoietic stem-cell maintenance under stress by modulating p53 activity. Blood. 2017;130:2619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Z, Yi W, Morita Y, Wang H, Cong Y, Liu JP, et al. Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat Commun. 2015;6:6808.

    Article  CAS  PubMed  Google Scholar 

  58. Wang YV, Leblanc M, Fox N, Mao JH, Tinkum KL, Krummel K, et al. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev. 2011;25:1426–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han C, He S, Wang R, Gao X, Wang H, Qiao J, et al. The role of ARHGAP9: clinical implication and potential function in acute myeloid leukemia. J Transl Med. 2021;19:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thol F, Ganser A. Treatment of Relapsed Acute Myeloid Leukemia. Curr Treat Options Oncol. 2020;21:66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Jinyong Wang for gifting the CD45.1 mice, Yang Liu and Haiying Ran for technical support in flow cytometry. This work was supported by grants from the National Natural Science Fund of China (No. 81930090, 81725019) and the Scientific Research Project of PLA (AWS16J014).

Author information

Authors and Affiliations

Authors

Contributions

ZZ and YL performed experiments, analyzed data, and wrote the manuscript; YQ and YX contributed to animal experiments and data analysis; SW, FC, MS and MC contributed to flow cytometric analysis; NC, LY and SC contributed to the in vitro experiments; FW and YS contributed to the initial experimental design and discussed the manuscript; MH and JW conceived and supervised the study, analyzed the data, and wrote and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mengjia Hu or Junping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Lu, Y., Qi, Y. et al. CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21. Leukemia 36, 956–969 (2022). https://doi.org/10.1038/s41375-022-01512-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01512-5

This article is cited by

Search

Quick links