Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

N-(4-hydroxyphenyl)retinamide promotes apoptosis of resting and proliferating B-cell chronic lymphocytic leukemia cells and potentiates fludarabine and ABT-737 cytotoxicity

Abstract

The in vitro effects of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide) on primary B-cell chronic lymphocytic leukemia (CLL) cells from previously untreated CLL patients were investigated. 4HPR promoted the intrinsic apoptotic pathway by reactive oxygen species (ROS) generation and was accompanied by drop of Mcl-1 protein expression. The latter was not attributable to transcriptional downregulation but to protein degradation mediated by jun N-terminal kinase activation, and likely by NF-kB downregulation and Noxa upregulation. CLL cells stimulated in vitro with CD40L did not increase 4HPR chemoresistance if activation was accompanied by proliferation. Intra-patient analysis confirmed that the proliferating pool of CLL cells was more sensitive to the cytotoxic action of 4HPR than the activated but resting CLL subpopulation. The different 4HPR susceptibility of the two subpopulations was associated with higher Noxa expression in proliferating CLLs. Combination experiments revealed that 4HPR strongly potentiated ABT-737 cytotoxicity, especially in proliferating CLL cells that displayed amplified chemoresistance to ABT-737 alone. Synergic cytotoxicity was also demonstrated in combination with fludarabine, in both resting and stimulated CLL samples. This study entitles 4HPR to be assayed as a chemotherapeutic adjuvant for the treatment of CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Calissano C, Damle RN, Hayes G, Murphy EJ, Hellerstein MK, Moreno C et al. In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 2009; 114: 4832–4842.

    Article  CAS  Google Scholar 

  2. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  Google Scholar 

  3. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  Google Scholar 

  4. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    Article  CAS  Google Scholar 

  5. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–1471.

    Article  CAS  Google Scholar 

  6. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  Google Scholar 

  7. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807–3817.

    Article  CAS  Google Scholar 

  8. Veronese L, Tournilhac O, Verrelle P, Davi F, Dighiero G, Chautard E et al. Low MCL-1 mRNA expression correlates with prolonged survival in B-cell chronic lymphocytic leukemia. Leukemia 2008; 22: 1291–1293.

    Article  CAS  Google Scholar 

  9. Hussain SR, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA et al. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 2007; 13: 2144–2150.

    Article  CAS  Google Scholar 

  10. Farber CM, Liebes LF, Kanganis DN, Silber R . Human B lymphocytes show greater susceptibility to H2O2 toxicity than T lymphocytes. J Immunol 1984; 132: 2543–2546.

    CAS  PubMed  Google Scholar 

  11. Oltra AM, Carbonell F, Tormos C, Iradi A, Saez GT . Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Radic Biol Med 2001; 30: 1286–1292.

    Article  CAS  Google Scholar 

  12. Farber CM, Kanganis DN, Liebes LF, Silber R . Antioxidant enzymes in lymphocytes from normal subjects and patients with chronic lymphocytic leukaemia: increased glutathione peroxidase activity in CLL B lymphocytes. Br J Haematol 1989; 72: 32–35.

    Article  CAS  Google Scholar 

  13. Children’s Oncology Group (CCG 09709). Villablanca JG, Krailo MD, Ames MM, Reid JM, Reaman GH et al. Phase I trial of oral fenretinide in children with high-risk solid tumors: a report from the Children’s Oncology Group (CCG 09709). J Clin Oncol 2006; 24: 3423–3430.

    Article  Google Scholar 

  14. Puduvalli VK, Yung WK, Hess KR, Kuhn JG, Groves MD, Levin VA et al. Phase II study of fenretinide (NSC 374551) in adults with recurrent malignant gliomas: A North American Brain Tumor Consortium study. J Clin Oncol 2004; 22: 4282–4289.

    Article  CAS  Google Scholar 

  15. Decensi A, Robertson C, Guerrieri-Gonzaga A, Serrano D, Cazzaniga M, Mora S et al. Randomized double-blind 2 × 2 trial of low-dose tamoxifen and fenretinide for breast cancer prevention in high-risk premenopausal women. J Clin Oncol 2009; 27: 3749–3756.

    Article  CAS  Google Scholar 

  16. Decensi A, Bruno S, Costantini M, Torrisi R, Curotto A, Gatteschi B et al. Phase IIa study of fenretinide in superficial bladder cancer, using DNA flow cytometry as an intermediate end point. J Natl Cancer Inst 1994; 86: 138–140.

    Article  CAS  Google Scholar 

  17. Colombo N, Formelli F, Cantu MG, Parma G, Gasco M, Argusti A et al. A phase I-II preoperative biomarker trial of fenretinide in ascitic ovarian cancer. Cancer Epidemiol Biomarkers Prev 2006; 15: 1914–1919.

    Article  CAS  Google Scholar 

  18. Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP . Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst 2008; 100: 580–595.

    Article  CAS  Google Scholar 

  19. Darwiche N, Abou-Lteif G, Bazarbachi A . Reactive oxygen species mediate N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T cells and are inhibited by the HTLV-I oncoprotein Tax. Leukemia 2007; 21: 261–269.

    Article  CAS  Google Scholar 

  20. Morales MC, Perez-Yarza G, Rementeria NN, Boyano MD, Apraiz A, Gomez-Munoz A et al. 4-HPR-mediated leukemia cell cytotoxicity is triggered by ceramide-induced mitochondrial oxidative stress and is regulated downstream by Bcl-2. Free Radic Res 2007; 41: 591–601.

    Article  CAS  Google Scholar 

  21. Boya P, Morales MC, Gonzalez-Polo RA, Andreau K, Gourdier I, Perfettini JL et al. The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 2003; 22: 6220–6230.

    Article  CAS  Google Scholar 

  22. Delia D, Aiello A, Lombardi L, Pelicci PG, Grignani F, Formelli F et al. N-(4-hydroxyphenyl)retinamide induces apoptosis of malignant hemopoietic cell lines including those unresponsive to retinoic acid. Cancer Res 1993; 53: 6036–6041.

    CAS  PubMed  Google Scholar 

  23. Ghiotto F, Fais F, Tenca C, Tomati V, Morabito F, Casciaro S et al. Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic. Cancer Biol Ther 2009; 8: 263–271.

    Article  CAS  Google Scholar 

  24. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  25. Marachelian AKM, Hwang K, Villablanca JG, Groshen S, Matthay KK et al. Phase 1 study of fenretinide (4-HPR) oral powder in patients with recurrent or resistant neuroblastoma: New Approaches to Neuroblastoma Therapy (NANT) Consortium trial. J Clin Oncol 2009; 27, abs 10009.

  26. Kummar S, Gutierrez ME, Maurer BJ, Reynolds CP, Kang M, Singh H et al. Phase I trial of fenretinide lym-x-sorb oral powder in adults with solid tumors and lymphomas. Anticancer Res 2011; 31: 961–966.

    CAS  PubMed  Google Scholar 

  27. Mohrbacher A GM, Murgo AJ, Kummar S, Reynolds CP, Maurer BJ et al. Phase I trial of fenretinide (4-HPR) intravenous emulsion for hematologic malignancies. J Clin Oncol 2007; 25, (abs): 13007.

  28. Allen JC, Talab F, Zuzel M, Lin K, Slupsky JR . c-Abl regulates Mcl-1 gene expression in chronic lymphocytic leukemia cells. Blood 117: 2414–2422.

    Article  CAS  Google Scholar 

  29. Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML et al. The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 2008; 111: 4681–4689.

    Article  CAS  Google Scholar 

  30. Sitailo LA, Tibudan SS, Denning MF . The protein kinase C delta catalytic fragment targets Mcl-1 for degradation to trigger apoptosis. J Biol Chem 2006; 281: 29703–29710.

    Article  CAS  Google Scholar 

  31. Ruvolo VR, Karanjeet KB, Schuster TF, Brown R, Deng Y, Hinchcliffe E et al. Role for PKC delta in Fenretinide-Mediated Apoptosis in Lymphoid Leukemia Cells. J Signal Transduct 2010; 2010 584657.

  32. Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 2001; 98: 13681–13686.

    Article  CAS  Google Scholar 

  33. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9: 351–365.

    Article  CAS  Google Scholar 

  34. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  Google Scholar 

  35. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    Article  CAS  Google Scholar 

  36. Morel C, Carlson SM, White FM, Davis RJ . Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis. Mol Cell Biol 2009; 29: 3845–3852.

    Article  CAS  Google Scholar 

  37. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA 2007; 104: 6217–6222.

    Article  CAS  Google Scholar 

  38. Pickering BM, de Mel S, Lee M, Howell M, Habens F, Dallman CL et al. Pharmacological inhibitors of NF-kappaB accelerate apoptosis in chronic lymphocytic leukaemia cells. Oncogene 2007; 26: 1166–1177.

    Article  CAS  Google Scholar 

  39. Griner EM, Kazanietz MG . Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 2007; 7: 281–294.

    Article  CAS  Google Scholar 

  40. Ringshausen I, Schneller F, Bogner C, Hipp S, Duyster J, Peschel C et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood 2002; 100: 3741–3748.

    Article  CAS  Google Scholar 

  41. Ringshausen I, Oelsner M, Weick K, Bogner C, Peschel C, Decker T . Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL. Leukemia 2006; 20: 514–520.

    Article  CAS  Google Scholar 

  42. Baudot AD, Jeandel PY, Mouska X, Maurer U, Tartare-Deckert S, Raynaud SD et al. The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene 2009; 28: 3261–3273.

    Article  CAS  Google Scholar 

  43. O’Donnell PH, Guo WX, Reynolds CP, Maurer BJ . N(4-hydroxyphenyl)retinamide increases ceramide and is cytotoxic to acute lymphoblastic leukemia cell lines, but not to non-malignant lymphocytes. Leukemia 2002; 16: 902–910.

    Article  Google Scholar 

  44. Garaventa A, Luksch R, Lo Piccolo MS, Cavadini E, Montaldo PG, Pizzitola MR et al. Phase I trial and pharmacokinetics of fenretinide in children with neuroblastoma. Clin Cancer Res 2003; 9: 2032–2039.

    CAS  PubMed  Google Scholar 

  45. Villablanca JG, London WB, Naranjo A, McGrady P, Ames MM, Reid JM et al. Phase II study of oral capsular 4-hydroxyphenylretinamide (4-HPR/fenretinide) in pediatric patients with refractory or recurrent neuroblastoma: a report from the Children's Oncology Group. Clin Cancer Res 17: 6858–6866.

    Article  CAS  Google Scholar 

  46. Villablanca JG, Krailo MD, Ames MM, Reid JM, Reaman GH, Reynolds CP . Phase I trial of oral fenretinide in children with high-risk solid tumors: a report from the Children's Oncology Group (CCG 09709). J Clin Oncol 2006; 24: 3423–3430.

    Article  CAS  Google Scholar 

  47. Reynolds CP, Frgala FT, Tsao-Wei DD, Groshen S, Morgan R, McNamara M et al. High plasma levels of fenretinide (4-HPR) were associated with improved outcome in a phase II study of recurrent ovarian cancer: A study by the California Cancer Consortium. J Clin Oncol 2007; 25 (18Sabs): 5555.

    Google Scholar 

  48. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.

    Article  CAS  Google Scholar 

  49. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    Article  CAS  Google Scholar 

  50. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 2009; 113: 4403–4413.

    Article  CAS  Google Scholar 

  51. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010; 11: 1149–1159.

    Article  CAS  Google Scholar 

  52. Schoenwaelder SM, Jarman KE, Gardiner E, Hua M, Qiao J, White MJ et al. Bcl-xL inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 2011; 118: 1663–1674.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Associazione Italiana Ricerca sul Cancro (AIRC) (IG-10698 to FF, RG6432 to FM); Compagnia di San Paolo 4824 SD/CV, 2007.2880 to FF; AIRC-Special Program Molecular Clinical Oncology-‘5 per mille’, grant 9980, 2010-15 to FM; Ricerca Finalizzata from Italian Ministry of Health 2006 to FM; Fondazione Maria Piaggio Casarsa, Genova, Italy to FG; and Fondazione Amelia Scorza onlus, Cosenza, Italy to FM. We would like to thank Fondazione Internazionale di Ricerca in Medicina Sperimentale (FIRMS) that provided financial and administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Bruno.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, S., Ghiotto, F., Tenca, C. et al. N-(4-hydroxyphenyl)retinamide promotes apoptosis of resting and proliferating B-cell chronic lymphocytic leukemia cells and potentiates fludarabine and ABT-737 cytotoxicity. Leukemia 26, 2260–2268 (2012). https://doi.org/10.1038/leu.2012.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.98

Keywords

This article is cited by

Search

Quick links