Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Let-7/miR-98 regulate Fas and Fas-mediated apoptosis

Abstract

Fas is ubiquitously expressed on a variety of cells and triggers apoptosis, which have critical roles in the immune system. MicroRNAs (miRNAs) have been recently identified as regulators that modulate target gene expression and are involved in diverse biological processes, such as cell proliferation and apoptosis. This study was undertaken to investigate the contribution of miRNA in the regulation of Fas expression and Fas-mediated apoptosis. Bioinformatics analysis indicated that Fas was a potential target of let-7/miR-98 family. Indeed ectopic expression of let-7/miR-98 reduced, whereas knockdown of endogenous let-7/miR-98 increased the expression of Fas at both mRNA and protein levels. Let-7/miR-98 was verified to target Fas 3′ untranslated region directly by site-directed gene mutagenesis and reporter gene assay. More importantly, introduction of let-7/miR-98 could decrease the sensitivity to Fas-induced apoptosis. Furthermore, let-7/miR-98 expression was reduced in activation-induced cell death process, accompanied by increased expression of Fas. In conclusion, our study first demonstrated that let-7/miR-98 regulated Fas expression and the sensitivity of Fas-mediated apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Krueger A, Fas SC, Baumann S, Krammer PH . The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol Rev 2003; 193: 58–69.

    Article  CAS  Google Scholar 

  2. Strasser A, Jost PJ, Nagata S . The many roles of FAS receptor signaling in the immune system. Immunity 2009; 30: 180–192.

    Article  CAS  Google Scholar 

  3. Sharma K, Wang RX, Zhang LY, Yin DL, Luo XY, Solomon JC et al. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 2000; 88: 333–347.

    Article  CAS  Google Scholar 

  4. Nat R, Radu E, Regalia T, Popescu LM . Apoptosis in the immune system: 1. Fas-induced apoptosis in monocytes-derived human dendritic cells. J Cell Mol Med 2002; 6: 223–234.

    Article  CAS  Google Scholar 

  5. Wahlsten JL, Gitchell HL, Chan CC, Wiggert B, Caspi RR . Fas and Fas ligand expressed on cells of the immune system, not on the target tissue, control induction of experimental autoimmune uveitis. J Immunol 2000; 165: 5480–5486.

    Article  CAS  Google Scholar 

  6. Baumann S, Krueger A, Kirchhoff S, Krammer PH . Regulation of T cell apoptosis during the immune response. Curr Mol Med 2002; 2: 257–272.

    Article  CAS  Google Scholar 

  7. Moller P, Koretz K, Leithauser F, Bruderlein S, Henne C, Quentmeier A et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 1994; 57: 371–377.

    Article  CAS  Google Scholar 

  8. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81: 935–946.

    Article  CAS  Google Scholar 

  9. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347–1349.

    Article  CAS  Google Scholar 

  10. Worth A, Thrasher AJ, Gaspar HB . Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br J Haematol 2006; 133: 124–140.

    Article  CAS  Google Scholar 

  11. Courtney PA, Crockard AD, Williamson K, McConnell J, Kennedy RJ, Bell AL . Lymphocyte apoptosis in systemic lupus erythematosus: relationships with Fas expression, serum soluble Fas and disease activity. Lupus 1999; 8: 508–513.

    Article  CAS  Google Scholar 

  12. Wang R, Zhang L, Yin D, Mufson RA, Shi Y . Protein kinase C regulates Fas (CD95/APO-1) expression. J Immunol 1998; 161: 2201–2207.

    CAS  PubMed  Google Scholar 

  13. Kuhnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M et al. NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem 2000; 275: 6421–6427.

    Article  CAS  Google Scholar 

  14. Saint Fleur S, Hoshino A, Kondo K, Egawa T, Fujii H . Regulation of Fas-mediated immune homeostasis by an activation-induced protein, Cyclon. Blood 2009; 114: 1355–1365.

    Article  Google Scholar 

  15. Petak I, Danam RP, Tillman DM, Vernes R, Howell SR, Berczi L et al. Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 2003; 10: 211–217.

    Article  CAS  Google Scholar 

  16. Aratake K, Kamachi M, Iwanaga N, Kawasaki E, Izumi Y, Ida H et al. A cross-talk between RNA splicing and signaling pathway alters Fas gene expression at post-transcriptional level: alternative splicing of Fas mRNA in the leukemic U937 cells. J Lab Clin Med 2005; 146: 184–191.

    Article  CAS  Google Scholar 

  17. Tsuboi M, Eguchi K, Kawakami A, Matsuoka N, Kawabe Y, Aoyagi T et al. Fas antigen expression on synovial cells was down-regulated by interleukin 1 beta. Biochem Biophys Res Commun 1996; 218: 280–285.

    Article  CAS  Google Scholar 

  18. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  19. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  Google Scholar 

  20. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  Google Scholar 

  21. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161.

    Article  CAS  Google Scholar 

  22. Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B et al. Regulation of JAK2 by miR-135a: prognostic impact in classical Hodgkin lymphoma. Blood 2009; 114: 2945–2951.

    Article  CAS  Google Scholar 

  23. Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 2009; 28: 3360–3370.

    Article  CAS  Google Scholar 

  24. Hariharan M, Scaria V, Brahmachari SK . dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC bioinformatics 2009; 10: 108.

    Article  Google Scholar 

  25. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  Google Scholar 

  26. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86–89.

    Article  CAS  Google Scholar 

  27. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    Article  CAS  Google Scholar 

  28. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  Google Scholar 

  29. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    Article  CAS  Google Scholar 

  30. Secombe J, Pierce SB, Eisenman RN . Myc: a weapon of mass destruction. Cell 2004; 117: 153–156.

    Article  CAS  Google Scholar 

  31. Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–1030.

    Article  CAS  Google Scholar 

  32. Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–1579.

    Article  CAS  Google Scholar 

  33. Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 2009; 22: 431–441.

    Article  CAS  Google Scholar 

  34. Shi G, Perle MA, Mittal K, Chen H, Zou X, Hernando E et al. Let-7 repression leads to HMGA2 overexpression in uterine leiomyosarcoma. J Cell Mol Med 2009; 13: 3898–3905.

    Article  Google Scholar 

  35. Wang X, Hulshizer RL, Erickson-Johnson MR, Flynn HC, Jenkins RB, Lloyd RV et al. Identification of novel HMGA2 fusion sequences in lipoma: evidence that deletion of let-7 miRNA consensus binding site 1 in the HMGA2 3′ UTR is not critical for HMGA2 transcriptional upregulation. Genes Chromosomes Cancer 2009; 48: 673–678.

    Article  CAS  Google Scholar 

  36. Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS et al. Identification of let-7-regulated oncofetal genes. Cancer Res 2008; 68: 2587–2591.

    Article  CAS  Google Scholar 

  37. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66: 233–243.

    Article  CAS  Google Scholar 

  38. Pauley KM, Cha S, Chan EK . MicroRNA in autoimmunity and autoimmune diseases. J autoimmun 2009; 32: 189–194.

    Article  CAS  Google Scholar 

  39. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 2008; 14: 2535–2542.

    Article  CAS  Google Scholar 

  40. Das H, Koizumi T, Sugimoto T, Chakraborty S, Ichimura T, Hasegawa K et al. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br J Cancer 2000; 82: 1682–1688.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National High Technology Research and Development Program of China (863 Program; no. 2007AA02Z123), the National Basic Research Program of China (973 Program; no. 2007CB947900), the National Natural Science Funds for Distinguished young scholar (no. 81025016), the National Natural Science Foundation of China (no. 30700734, no. 30301026, no. 30971632), the Program of the Shanghai Commission of Science and Technology (no. 06JC14050, no. 07ZR14130, no. 08JC1414700) and Program of Shanghai Subject Chief Scientist (no. 07XD14021). We thank Bo Qu, Xiaoxia Qian, Xiang Miao and Haibo Zhou for helpful discussions, technical expertise and/or review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Tang or N Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Tang, Y., Cui, H. et al. Let-7/miR-98 regulate Fas and Fas-mediated apoptosis. Genes Immun 12, 149–154 (2011). https://doi.org/10.1038/gene.2010.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.53

Keywords

Search

Quick links