Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro

Abstract

Epigenetic factors, including altered microRNA (miRNA) expression, may contribute to aberrant immune cell function in systemic lupus erythematosus (SLE). MiRNA-let-7a (let-7a) has been shown to directly alter cell cycle progression and proinflammatory cytokine production. Due to the crucial role of let-7a in cell division and inflammation, we investigated let-7a-mediated proliferation and NFκB translocation in J774A.1 macrophages and MES 13 mesangial cells in vitro. In immune-stimulated cells transfected with let-7a, cell proliferation was significantly increased over time. There was a significant increase in the number of immune-stimulated cells in S and G2 phases. Immune-stimulated cells overexpressing let-7a had increased nuclear translocation of NFκB. Bioinformatical analysis revealed that the E2F family, critical regulators of the G1–S transition, has potential binding sites for let-7a in their mRNA transcripts. Let-7a overexpression significantly increased the expression of the cell cycle activator E2F2 and increased retinoblastoma protein (Rb) phosphorylation in immune-stimulated cells. The cell cycle inhibitor E2F5 was significantly decreased in let-7a-transfected cells that were immune-stimulated. Bioinformatical analysis revealed E2F2 and NFκB are transcription factors predicted to regulate the let-7a promoter. We analyzed transcriptional regulation of let-7a by real-time RT-PCR using chromatin immunoprecipitation with E2F2 and NFκB antibodies. There was an increase in E2F2 and NFκB binding in DNA enriched for the let-7a promoter in immune-stimulated cells. Silencing E2F2 or NFκB significantly decreased let-7a expression and IL-6 production in immune-stimulated cells. Taken together, our results suggest that overexpression of let-7a may contribute to hyperplasia and the proinflammatory response in SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kashem A, Endoh M, Yano N, Yamauchi F, Nomoto Y, Sakai H . Expression of inducible-NOS in human glomerulonephritis: the possible source is infiltrating monocytes/macrophages. Kidney Int 1996; 50: 392–399.

    Article  CAS  Google Scholar 

  2. de Zubiria Salgado A, Herrera-Diaz C . Lupus nephritis: an overview of recent findings. Autoimmune Dis 2012; 2012: 849684.

    PubMed  PubMed Central  Google Scholar 

  3. Seret G, Le Meur Y, Renaudineau Y, Youinou P . Mesangial cell-specific antibodies are central to the pathogenesis of lupus nephritis. Clin Dev Immunol 2012; 2012: 579670.

    Article  Google Scholar 

  4. Li Y, Lee PY, Reeves WH . Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch Immunol Ther Exp 2010; 58: 355–364.

    Article  CAS  Google Scholar 

  5. Pathak S, Mohan C . Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models. Arthritis Res Ther 2011; 13: 241.

    Article  Google Scholar 

  6. Choi J, Kim ST, Craft J . The pathogenesis of systemic lupus erythematosus—an update. Curr Opin Immunol 2012; 24: 651–657.

    Article  CAS  Google Scholar 

  7. Granholm NA, Cavallo T . Mechanism of localization of immune complexes in NZB/W mice with early nephritis. Autoimmunity 1990; 8: 17–24.

    Article  CAS  Google Scholar 

  8. Menè P . Physiology and pathophysiology of the mesangial cell. Nefrologia 1996; 16: 8–13.

    Google Scholar 

  9. Lewis EJ, Schwartz MM . Pathology of lupus nephritis. Lupus 2005; 14: 31–38.

    Article  CAS  Google Scholar 

  10. Naugler WE, Karin M . NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 2008; 18: 19–26.

    Article  CAS  Google Scholar 

  11. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  Google Scholar 

  12. Gupta SC, Kim JH, Kannappan R, Reuter S, Dougherty PM, Aggarwal BB . Role of nuclear factor kappaB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med (Maywood) 2011; 236: 658–671.

    Article  CAS  Google Scholar 

  13. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    Article  CAS  Google Scholar 

  14. Yap DY, Lai KN . Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010; 2010: 365083.

    Article  Google Scholar 

  15. Ranieri E, Gesualdo L, Petrarulo F, Schena FP . Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. Kidney Int 1996; 50: 1990–2001.

    Article  CAS  Google Scholar 

  16. Tackey E, Lipsky PE, Illei GG . Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 2004; 13: 339–343.

    Article  CAS  Google Scholar 

  17. Eitner F, Westerhuis R, Burg M, Weinhold B, Grone HJ, Ostendorf T et al. Role of interleukin-6 in mediating mesangial cell proliferation and matrix production in vivo. Kidney Int 1997; 51: 69–78.

    Article  CAS  Google Scholar 

  18. Peairs A, Dai R, Gan L, Shimp S, Rylander MN, Li L et al. Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol 2010; 7: 123–132.

    Article  CAS  Google Scholar 

  19. Cove-Smith A, Hendry BM . The regulation of mesangial cell proliferation. Nephron Exp Nephrol 2008; 108: e74–e79.

    Article  Google Scholar 

  20. Kong EK, Chong WP, Wong WH, Lau CS, Chan TM, Ng PK et al. p21 gene polymorphisms in systemic lupus erythematosus. Rheumatology (Oxford) 2007; 46: 220–226.

    Article  CAS  Google Scholar 

  21. Liu ZC, Zhou QL . Tumor necrosis factor-like weak inducer of apoptosis and its potential roles in lupus nephritis. Inflamm Res 2012; 61: 277–284.

    Article  CAS  Google Scholar 

  22. Attwooll C, Lazzerini Denchi E, Helin K . The E2F family: specific functions and overlapping interests. EMBO J 2004; 23: 4709–4716.

    Article  CAS  Google Scholar 

  23. Stevaux O, Dyson NJ . A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14: 684–691.

    Article  CAS  Google Scholar 

  24. Poznic M . Retinoblastoma protein: a central processing unit. J Biosci 2009; 34: 305–312.

    Article  CAS  Google Scholar 

  25. Armananzas R, Calvo B, Inza I, Lopez-Hoyos M, Martinez-Taboada V, Ucar E et al. Microarray analysis of autoimmune diseases by machine learning procedures. IEEE Trans Inf Technol Biomed 2009; 13: 341–350.

    Article  Google Scholar 

  26. Renaudineau Y, Youinou P . Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med 2011; 60: 10–16.

    Article  CAS  Google Scholar 

  27. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  Google Scholar 

  28. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282–5287.

    Article  CAS  Google Scholar 

  29. Wanet A, Tacheny A, Arnould T, Renard P . miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40: 4742–4753.

    Article  CAS  Google Scholar 

  30. Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E . miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819–15824.

    Article  CAS  Google Scholar 

  31. Taganov KD, Boldin MP, Chang KJ, Baltimore D . NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481–12486.

    Article  CAS  Google Scholar 

  32. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104: 1604–1609.

    Article  CAS  Google Scholar 

  33. Chafin CB, Regna NL, Dai R, Caudell DL, Reilly CM . MicroRNA-let-7a expression is increased in the mesangial cells of NZB/W mice and increases IL-6 production in vitro. Autoimmunity 2013; 46: 351–362.

    Article  CAS  Google Scholar 

  34. Ma F, Liu X, Li D, Wang P, Li N, Lu L et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 2010; 184: 6053–6059.

    Article  CAS  Google Scholar 

  35. Asirvatham AJ, Magner WJ, Tomasi TB . miRNA regulation of cytokine genes. Cytokine 2009; 45: 58–69.

    Article  CAS  Google Scholar 

  36. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y . Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int. 2009; 29: 749–754.

    Article  CAS  Google Scholar 

  37. de Vito C, Riggi N, Suva ML, Janiszewska M, Horlbeck J, Baumer K et al. Let-7a is a direct EWS-FLI-1 target implicated in Ewing's sarcoma development. PLoS ONE 2011; 6: e23592.

    Article  CAS  Google Scholar 

  38. Izzotti A . Molecular medicine and the development of cancer chemopreventive agents. Ann NY Acad Sci 2012; 1259: 26–32.

    Article  CAS  Google Scholar 

  39. Bueno MJ, Gomez de Cedron M, Laresgoiti U, Fernandez-Piqueras J, Zubiaga AM, Malumbres M . Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 2010; 30: 2983–2995.

    Article  CAS  Google Scholar 

  40. Liu Y, Yin B, Zhang C, Zhou L, Fan J . Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc. Biochem Biophys Res Commun 2012; 417: 371–375.

    Article  CAS  Google Scholar 

  41. Wang YY, Ren T, Cai YY, He XY . MicroRNA let-7a inhibits the proliferation and invasion of nonsmall cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother Radiopharm 2013; 28: 131–137.

    Article  CAS  Google Scholar 

  42. Dong Q, Meng P, Wang T, Qin W, Wang F, Yuan J et al. MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS ONE 2010; 5: e10147.

    Article  Google Scholar 

  43. Ormerod MG . Flow Cytometry: A Practical Approach. 3rd ed. New York: Oxford University Press, Inc., 2000.

  44. Dai R, Phillips RA, Zhang Y, Khan D, Crasta O, Ahmed SA . Suppression of LPS-induced interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood 2008; 112: 4591–4597.

    Article  CAS  Google Scholar 

  45. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM . PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002; 18: 333–334.

    Article  CAS  Google Scholar 

  46. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 2003; 31: 3651–3653.

    Article  CAS  Google Scholar 

  47. Welch PJ, Wang JY . A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 1993; 75: 779–790.

    Article  CAS  Google Scholar 

  48. Weinberg RA . The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  CAS  Google Scholar 

  49. Urashima M, Ogata A, Chauhan D, Vidriales MB, Teoh G, Hoshi Y et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein. Blood 1996; 88: 2219–2227.

    CAS  PubMed  Google Scholar 

  50. Wang DJ, Legesse-Miller A, Johnson EL, Coller HA . Regulation of the let-7a-3 promoter by NF-kappaB. PLoS ONE 2012; 7: e31240.

    Article  CAS  Google Scholar 

  51. Shimp SK 3rd, Parson CD, Regna NL, Thomas AN, Chafin CB, Reilly CM et al. HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-kappaB pathways. Inflamm Res 2012; 61: 521–533.

    Article  CAS  Google Scholar 

  52. Son YH, Jeong YT, Lee KA, Choi KH, Kim SM, Rhim BY et al. Roles of MAPK and NF-kappaB in interleukin-6 induction by lipopolysaccharide in vascular smooth muscle cells. J. Cardiovasc Pharmacol 2008; 51: 71–77.

    Article  CAS  Google Scholar 

  53. Libermann TA, Baltimore D . Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10: 2327–2334.

    Article  CAS  Google Scholar 

  54. Kuzmanova SI . The macrophage activation syndrome: a new entity, a potentially fatal complication of rheumatic disorders. Folia Med (Plovdiv) 2005; 47: 21–25.

    Google Scholar 

  55. Grammer AC, Lipsky PE . B cell abnormalities in systemic lupus erythematosus. Arthritis Res Ther 2003; 5( Suppl 4): S22–S27.

    Article  Google Scholar 

  56. Scheinecker C, Bonelli M, Smolen JS . Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. J Autoimmun 2010; 35: 269–275.

    Article  CAS  Google Scholar 

  57. Yung S, Chan TM . Autoantibodies and resident renal cells in the pathogenesis of lupus nephritis: getting to know the unknown. Clin Dev Immunol 2012; 2012: 139365.

    Article  Google Scholar 

  58. Aran AA, Putterman C . Treatment of lupus nephritis: facing the era of immunotherapy. Panminerva Med 2008; 50: 235–245.

    CAS  PubMed  Google Scholar 

  59. Ramanujam M, Davidson A . Targeting of the immune system in systemic lupus erythematosus. Expert Rev Mol Med 2008; 10: e2.

    Article  Google Scholar 

  60. Michaud-Levesque J, Bousquet-Gagnon N, Beliveau R . Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp Cell Res 2012; 318: 925–935.

    Article  CAS  Google Scholar 

  61. Henley SA, Dick FA . The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 2012; 7: 10.

    Article  CAS  Google Scholar 

  62. Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F et al. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011; 32: 713–722.

    Article  CAS  Google Scholar 

  63. Zhu Y, Zhong Z, Liu Z . Lentiviral vector-mediated upregulation of let-7a inhibits gastric carcinoma cell growth in vitro and in vivo. Scand J Gastroenterol 2011; 46: 53–59.

    Article  CAS  Google Scholar 

  64. Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ et al. Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer 2010; 49: 549–559.

    Article  CAS  Google Scholar 

  65. Khodayari N, Mohammed KA, Goldberg EP, Nasreen N . EphrinA1 inhibits malignant mesothelioma tumor growth via let-7 microRNA-mediated repression of the RAS oncogene. Cancer Gene Ther 2011; 18: 806–816.

    Article  CAS  Google Scholar 

  66. Vasudevan S, Tong Y, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931–1934.

    Article  CAS  Google Scholar 

  67. Grande JP . Mechanisms of progression of renal damage in lupus nephritis: pathogenesis of renal scarring. Lupus 1998; 7: 604–610.

    Article  CAS  Google Scholar 

  68. Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C . E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 2008; 263: 157–163.

    Article  CAS  Google Scholar 

  69. Johnson DG, Degregori J . Putting the oncogenic and tumor suppressive activities of E2F into context. Curr Mol Med 2006; 6: 731–738.

    CAS  PubMed  Google Scholar 

  70. Schocklmann HO, Lang S, Sterzel RB . Regulation of mesangial cell proliferation. Kidney Int 1999; 56: 1199–1207.

    Article  CAS  Google Scholar 

  71. Tomita N, Horiuchi M, Tomita S, Gibbons GH, Kim JY, Baran D et al. An oligonucleotide decoy for transcription factor E2F inhibits mesangial cell proliferation in vitro. Am J Physiol 1998; 275: F278–F284.

    Article  CAS  Google Scholar 

  72. Maeshima Y, Kashihara N, Yasuda T, Sugiyama H, Sekikawa T, Okamoto K et al. Inhibition of mesangial cell proliferation by E2F decoy oligodeoxynucleotide in vitro and in vivo. J Clin Invest 1998; 101: 2589–2597.

    Article  Google Scholar 

  73. Celhar T, Magalhaes R, Fairhurst AM . TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res 2012; 53: 58–77.

    Article  CAS  Google Scholar 

  74. Kulkarni O, Anders HJ . Chemokines in lupus nephritis. Front Biosci 2008; 13: 3312–3320.

    Article  CAS  Google Scholar 

  75. Theofilopoulos AN, Kono DH, Beutler B, Baccala R . Intracellular nucleic acid sensors and autoimmunity. J Interferon Cytokine Res 2011; 31: 867–886.

    Article  CAS  Google Scholar 

  76. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY . Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 2006; 119: 296–305.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Melissa Makris for her assistance with flow data analyses. This work was supported by a grant from the National Institutes of Health/National Institute of Allergy and Infectious Diseases (R15 AR062883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristen B Chafin.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chafin, C., Regna, N., Caudell, D. et al. MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro. Cell Mol Immunol 11, 79–83 (2014). https://doi.org/10.1038/cmi.2013.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.51

Keywords

This article is cited by

Search

Quick links