Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway

Abstract

Oral cancer consists of squamous cell carcinoma within the oral cavity or on the lip. The clinical prognosis of this cancer is mostly poor owing to delayed diagnosis and a lack of appropriate early detection biomarkers to identify the disease. In the current study, we investigated the role of the S100A7 calcium-binding protein in oral squamous cell carcinoma as an activator of the p38/MAPK and RAB2A signaling pathway. The aim of the present study was to determine whether S100A7 and RAB2A have a role in tumor progression and to assess their potential as early detection biomarkers for oral cancer. This study elucidated the functional and molecular mechanisms of S100A7 and RAB2A activity in oral cancer, leading us to conclude that S100A7 is the major contributing factor in the occurrence of oral cancer and promotes local tumor progression by activating the MAPK signaling pathway via the RAB2A pathway. We hypothesize that S100A7 affects cell motility and invasion by regulating the RAB2A-associated MAPK signaling cascades. Also, the downregulation of S100A7 expression by RNA interference-mediated silencing inhibits oral cancer cell growth, migration and invasion.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Kreeft AM, Tan IB, Leemans CR, Balm AJ . The surgical dilemma in advanced oral and oropharyngeal cancer: how we do it. Clin Otolaryngol 2011; 36: 260–266.

    Article  CAS  Google Scholar 

  2. Ni YH, Ding L, Hu QG, Hua ZC . Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl 2015; 9: 86–97.

    Article  CAS  Google Scholar 

  3. Mangalath U, Aslam SA, Abdul Khadar AH, Francis PG, Mikacha MS, Kalathingal JH . Recent trends in prevention of oral cancer. J Int Soc Prev Community Dent 2014; 4 (Suppl 3): S131–S138.

    Article  Google Scholar 

  4. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Reboiras-Lopez MD, Gandara Rey JM, Garcia-Garcia A . Genetic and molecular alterations associated with oral squamous cell cancer (Review). Oncol Rep 2009; 22: 1277–1282.

    Article  CAS  Google Scholar 

  5. Mishra A, Verma V . Oral sex and hpv: population based indications. Indian J Otolaryngol Head Neck Surg 2015; 67 (Suppl 1): 1–7.

    Article  Google Scholar 

  6. Marur S, Forastiere AA . Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc 2008; 83: 489–501.

    Article  Google Scholar 

  7. Elango JK, Gangadharan P, Sumithra S, Kuriakose MA . Trends of head and neck cancers in urban and rural India. Asian Pac J Cancer Prev 2006; 7: 108–112.

    PubMed  Google Scholar 

  8. Sankaranarayanan R, Masuyer E, Swaminathan R, Ferlay J, Whelan S . Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res 1998; 18: 4779–4786.

    CAS  PubMed  Google Scholar 

  9. Dey KK, Pal I, Bharti R, Dey G, Kumar BN, Rajput S et al. Identification of RAB2A and PRDX1 as the potential biomarkers for oral squamous cell carcinoma using mass spectrometry-based comparative proteomic approach. Tumour Biol 2015; 36: 9829–9837.

    Article  CAS  Google Scholar 

  10. Heizmann CW, Fritz G, Schafer BW . S100 proteins: structure, functions and pathology. Front Biosci 2002; 7: d1356–d1368.

    CAS  Google Scholar 

  11. Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E et al. Molecular cloning, occurrence, and expression of a novel partially secreted protein "psoriasin" that is highly up-regulated in psoriatic skin. J Invest Dermatol 1991; 97: 701–712.

    Article  CAS  Google Scholar 

  12. Algermissen B, Sitzmann J, LeMotte P, Czarnetzki B . Differential expression of CRABP II, psoriasin and cytokeratin 1 mRNA in human skin diseases. Arch Dermatol Res 1996; 288: 426–430.

    Article  CAS  Google Scholar 

  13. Jinquan T, Vorum H, Larsen CG, Madsen P, Rasmussen HH, Gesser B et al. Psoriasin: a novel chemotactic protein. J Invest Dermatol 1996; 107: 5–10.

    Article  CAS  Google Scholar 

  14. Dey KK, Sarkar S, Pal I, Das S, Dey G, Bharti R et al. Mechanistic attributes of S100A7 (psoriasin) in resistance of anoikis resulting tumor progression in squamous cell carcinoma of the oral cavity. Cancer Cell Int 2015; 15: 74.

    Article  Google Scholar 

  15. van Ruissen F, Jansen BJ, de Jongh GJ, van Vlijmen-Willems IM, Schalkwijk J . Differential gene expression in premalignant human epidermis revealed by cluster analysis of serial analysis of gene expression (SAGE) libraries. Faseb J 2002; 16: 246–248.

    Article  CAS  Google Scholar 

  16. Olsen E, Rasmussen HH, Celis JE . Identification of proteins that are abnormally regulated in differentiated cultured human keratinocytes. Electrophoresis 1995; 16: 2241–2248.

    Article  CAS  Google Scholar 

  17. Ostergaard M, Rasmussen HH, Nielsen HV, Vorum H, Orntoft TF, Wolf H et al. Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer Res 1997; 57: 4111–4117.

    CAS  PubMed  Google Scholar 

  18. Moog-Lutz C, Bouillet P, Regnier CH, Tomasetto C, Mattei MG, Chenard MP et al. Comparative expression of the psoriasin (S100A7) and S100C genes in breast carcinoma and co-localization to human chromosome 1q21-q22. Int J Cancer 1995; 63: 297–303.

    Article  CAS  Google Scholar 

  19. Leygue E, Snell L, Hiller T, Dotzlaw H, Hole K, Murphy LC et al. Differential expression of psoriasin messenger RNA between in situ and invasive human breast carcinoma. Cancer Res 1996; 56: 4606–4609.

    CAS  PubMed  Google Scholar 

  20. Enerback C, Porter DA, Seth P, Sgroi D, Gaudet J, Weremowicz S et al. Psoriasin expression in mammary epithelial cells in vitro and in vivo. Cancer Res 2002; 62: 43–47.

    CAS  PubMed  Google Scholar 

  21. Al-Haddad S, Zhang Z, Leygue E, Snell L, Huang A, Niu Y et al. Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol 1999; 155: 2057–2066.

    Article  CAS  Google Scholar 

  22. Nikitenko LL, Lloyd BH, Rudland PS, Fear S, Barraclough R . Localisation by in situ hybridisation of S100A4 (p9Ka) mRNA in primary human breast tumour specimens. Int J Cancer 2000; 86: 219–228.

    Article  CAS  Google Scholar 

  23. Rasmussen HH, Orntoft TF, Wolf H, Celis JE . Towards a comprehensive database of proteins from the urine of patients with bladder cancer. J Urol 1996; 155: 2113–2119.

    Article  CAS  Google Scholar 

  24. Di Nuzzo S, Sylva-Steenland RM, Koomen CW, de Rie MA, Das PK, Bos JD et al. Exposure to UVB induces accumulation of LFA-1+ T cells and enhanced expression of the chemokine psoriasin in normal human skin. Photochem Photobiol 2000; 72: 374–382.

    Article  CAS  Google Scholar 

  25. Schaefer BM, Wallich R, Schmolke K, Fink W, Bechtel M, Reinartz J et al. Immunohistochemical and molecular characterization of cultured keratinocytes after dispase-mediated detachment from the growth substratum. Exp Dermatol 2000; 9: 58–64.

    Article  CAS  Google Scholar 

  26. Zouboulis CC, Voorhees JJ, Orfanos CE, Tavakkol A . Topical all-trans retinoic acid (RA) induces an early, coordinated increase in RA-inducible skin-specific gene/psoriasin and cellular RA-binding protein II mRNA levels which precedes skin erythema. Arch Dermatol Res 1996; 288: 664–669.

    Article  CAS  Google Scholar 

  27. Hoffmann HJ, Olsen E, Etzerodt M, Madsen P, Thogersen HC, Kruse T et al. Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. J Invest Dermatol 1994; 103: 370–375.

    Article  CAS  Google Scholar 

  28. Tavakkol A, Zouboulis CC, Duell EA, Voorhees JJ . A retinoic acid-inducible skin-specific gene (RIS-1/psoriasin): molecular cloning and analysis of gene expression in human skin in vivo and cultured skin cells in vitro. Mol Biol Rep 1994; 20: 75–83.

    Article  CAS  Google Scholar 

  29. Semprini S, Capon F, Bovolenta S, Bruscia E, Pizzuti A, Fabrizi G et al. Genomic structure, promoter characterisation and mutational analysis of the S100A7 gene: exclusion of a candidate for familial psoriasis susceptibility. Hum Genet 1999; 104: 130–134.

    Article  CAS  Google Scholar 

  30. Angel P, Szabowski A, Schorpp-Kistner M . Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001; 20: 2413–2423.

    Article  CAS  Google Scholar 

  31. Karin M, Cao Y, Greten FR, Li ZW . NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    Article  CAS  Google Scholar 

  32. Liu H, Wang L, Wang X, Cao Z, Yang Q, Zhang K . S100A7 enhances invasion of human breast cancer MDA-MB-468 cells through activation of nuclear factor-kappaB signaling. World J Surg Oncol 2013; 11: 93.

    Article  Google Scholar 

  33. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN et al. The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res 2005; 65: 5696–5702.

    Article  CAS  Google Scholar 

  34. Li T, Qi Z, Kong F, Li Y, Wang R, Zhang W et al. S100A7 acts as a dual regulator in promoting proliferation and suppressing squamous differentiation through GATA-3/caspase-14 pathway in A431 cells. Exp Dermatol 2015; 24: 342–348.

    Article  CAS  Google Scholar 

  35. Nasser MW, Wani NA, Ahirwar DK, Powell CA, Ravi J, Elbaz M et al. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment. Cancer Res 2015; 75: 974–985.

    Article  CAS  Google Scholar 

  36. Shubbar E, Vegfors J, Carlstrom M, Petersson S, Enerback C . Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation. Breast Cancer Res Treat 2012; 134: 71–80.

    Article  CAS  Google Scholar 

  37. Skliris GP, Lewis A, Emberley E, Peng B, Weebadda WK, Kemp A et al. Estrogen receptor-beta regulates psoriasin (S100A7) in human breast cancer. Breast Cancer Res Treat 2007; 104: 75–85.

    Article  CAS  Google Scholar 

  38. Petersson S, Bylander A, Yhr M, Enerback C . S100A7 (psoriasin), highly expressed in ductal carcinoma in situ (DCIS), is regulated by IFN-gamma in mammary epithelial cells. BMC Cancer 2007; 7: 205.

    Article  Google Scholar 

  39. West NR, Watson PH . S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer. Oncogene 2010; 29: 2083–2092.

    Article  CAS  Google Scholar 

  40. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res 2014; 74: 6806–6819.

    Article  CAS  Google Scholar 

  41. Deol YS, Nasser MW, Yu L, Zou X, Ganju RK . Tumor-suppressive effects of psoriasin (S100A7) are mediated through the beta-catenin/T cell factor 4 protein pathway in estrogen receptor-positive breast cancer cells. J Biol Chem 2011; 286: 44845–44854.

    Article  CAS  Google Scholar 

  42. Sun J, Feng X, Gao S, Xiao Z . microRNA-338-3p functions as a tumor suppressor in human non-small-cell lung carcinoma and targets Ras-related protein 14. Mol Med Rep 2015; 11: 1400–1406.

    Article  CAS  Google Scholar 

  43. Yoshida H, Miyachi M, Ouchi K, Kuwahara Y, Tsuchiya K, Iehara T et al. Identification of COL3A1 and RAB2A as novel translocation partner genes of PLAG1 in lipoblastoma. Genes Chromosomes Cancer 2014; 53: 606–611.

    Article  CAS  Google Scholar 

  44. Nourashrafeddin S, Aarabi M, Modarressi MH, Rahmati M, Nouri M . The evaluation of WBP2NL-related genes expression in breast cancer. Pathol Oncol Res 2014; 21: 293–300.

    Article  Google Scholar 

  45. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc Natl Acad Sci USA 2013; 110: 16562–16567.

    Article  CAS  Google Scholar 

  46. Kumar BN, Rajput S, Dey KK, Parekh A, Das S, Mazumdar A et al. Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling. BMC Cancer 2013; 13: 273.

    Article  CAS  Google Scholar 

  47. Levine JJ, Stimson-Crider KM, Vertino PM . Effects of methylation on expression of TMS1/ASC in human breast cancer cells. Oncogene 2003; 22: 3475–3488.

    Article  CAS  Google Scholar 

  48. Doan CC, Le LT, Hoang SN, Do SM, Le DV . Simultaneous silencing of VEGF and KSP by siRNA cocktail inhibits proliferation and induces apoptosis of hepatocellular carcinoma Hep3B cells. Biol Res 2014; 47: 70.

    Article  Google Scholar 

  49. Bai B, Chen PC, Hales CM, Wu Z, Pagala V, High AA et al. Integrated approaches for analyzing U1-70 K cleavage in Alzheimer's disease. J Proteome Res 2014; 13: 4526–4534.

    Article  CAS  Google Scholar 

  50. Pal I, Sarkar S, Rajput S, Dey KK, Chakraborty S, Dash R et al. BI-69A11 enhances susceptibility of colon cancer cells to mda-7/IL-24-induced growth inhibition by targeting Akt. Br J Cancer 2014; 111: 101–111.

    Article  CAS  Google Scholar 

  51. Sarkar S, Mazumdar A, Dash R, Sarkar D, Fisher PB, Mandal M . ZD6474 enhances paclitaxel antiproliferative and apoptotic effects in breast carcinoma cells. J Cell Physiol 2011; 226: 375–384.

    Article  CAS  Google Scholar 

  52. Venkatesan P, Bhutia SK, Singh AK, Das SK, Dash R, Chaudhury K et al. AEE788 potentiates celecoxib-induced growth inhibition and apoptosis in human colon cancer cells. Life Sci 2012; 91: 789–799.

    Article  CAS  Google Scholar 

  53. Chen Z, Htay A, Dos Santos W, Gillies GT, Fillmore HL, Sholley MM et al. In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells. J Neurooncol 2009; 92: 121–128.

    Article  CAS  Google Scholar 

  54. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9–34.

    Article  CAS  Google Scholar 

  55. Zhang X, Min J, Wang Y, Li Y, Li H, Liu Q et al. RABEX-5 plays an oncogenic role in breast cancer by activating MMP-9 pathway. J Exp Clin Cancer Res 2013; 32: 52.

    Article  Google Scholar 

  56. Li Y, Wang X, Cho JH, Shaw TI, Wu Z, Bai B et al. JUMPg: an integrative proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. J Proteome Res 2016; 15: 2309–2320.

    Article  CAS  Google Scholar 

  57. Ralhan R, DeSouza LV, Matta A, Tripathi SC, Ghanny S, Gupta SD et al. Discovery and verification of head-and-neck pre-cancer and cancer biomarkers by differential protein expression analysis using iTRAQ-labeling and multidimensional liquid chromatography and tandem mass spectrometry. Cancer Biomark 2008; 4: 158–158.

    Google Scholar 

  58. Gu Y, Wang Q, Guo K, Qin WZ, Liao WT, Wang S et al. TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/-catenin and MAPK signalling. J Pathol 2016; 239: 60–71.

    Article  CAS  Google Scholar 

  59. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA . p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 2009; 15: 369–379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Kaushik Kumar Dey is a recipient of a Research Fellowship from the Indian Council of Medical research (ICMR), (3/2/2/207/2013/NCD-III) Government of India for financial support, India. This study was supported by grants from the Department of Science and Technology (DST: http://www.dst.gov.in/), (SR/SO/BB-58/2008) and Y Rajesh individual research fellowship grant (2013/603) from the Department of Science and Technology (DST)—INSPIRE, India. This study was also partially supported by the Department Of Biotechnology, New Delhi, India (BT/PR2428/MED/12/517/2011, Date 05 March 2013) and Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS), BRNS (35/14/05/2015-BRNS/3053, Date 15 July 2015). We thank Keith A Laycock, PhD, ELS, for editorial assistance and Junmin Peng, PhD, Structural Biology Member, in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mandal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, K., Bharti, R., Dey, G. et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther 23, 382–391 (2016). https://doi.org/10.1038/cgt.2016.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.43

This article is cited by

Search

Quick links