Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity

Abstract

Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V . Suicide gene therapy in cancer: where do we stand now? Cancer Lett; 2012; 324 (2): 160–170.

    Article  CAS  PubMed  Google Scholar 

  2. Mohit E, Rafati S . Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol; 2013; 56 (4): 599–611.

    Article  CAS  PubMed  Google Scholar 

  3. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med; 2011; 365 (18): 1673–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramos CA, Asgari Z, Liu E, Yvon E, Heslop HE, Rooney CM et al. An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells; 2010; 28 (6): 1107–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK et al. An inducible caspase 9 safety switch for T-cell therapy. Blood; 2005; 105 (11): 4247–4254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM et al. A unified model for apical caspase activation. Mol Cell; 2003; 11 (2): 529–541.

    Article  CAS  PubMed  Google Scholar 

  7. Riedl SJ, Salvesen GS . The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol; 2007; 8 (5): 405–413.

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science; 1997; 275 (5303): 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  9. Naumann I, Kappler R, von Schweinitz D, Debatin KM, Fulda S . Bortezomib primes neuroblastoma cells for TRAIL-induced apoptosis by linking the death receptor to the mitochondrial pathway. Clin Cancer Res; 2011; 17 (10): 3204–3218.

    Article  CAS  PubMed  Google Scholar 

  10. Yang HH, Ma MH, Vescio RA, Berenson JR . Overcoming drug resistance in multiple myeloma: the emergence of therapeutic approaches to induce apoptosis. J Clin Oncol; 2003; 21 (22): 4239–4247.

    Article  CAS  PubMed  Google Scholar 

  11. Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M et al. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood; 2007; 110 (1): 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goel A, Dispenzieri A, Greipp PR, Witzig TE, Mesa RA, Russell SJ . PS-341-mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation-induced apoptosis. Exp Hematol; 2005; 33 (7): 784–795.

    Article  CAS  PubMed  Google Scholar 

  13. McConkey DJ, Zhu K . Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat; 2008; 11 (4-5): 164–179.

    Article  CAS  PubMed  Google Scholar 

  14. Gao P, Ding Q, Wu Z, Jiang H, Fang Z . Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett; 2010; 290 (2): 157–166.

    Article  CAS  PubMed  Google Scholar 

  15. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res; 2010; 70 (9): 3718–3729.

    Article  CAS  PubMed  Google Scholar 

  16. Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett; 2010; 290 (1): 58–67.

    Article  CAS  PubMed  Google Scholar 

  17. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res; 2002; 62 (13): 3603–3608.

    CAS  PubMed  Google Scholar 

  18. Wang Y, Hu JK, Krol A, Li YP, Li CY, Yuan F . Systemic dissemination of viral vectors during intratumoral injection. Mol Cancer Ther; 2003; 2 (11): 1233–1242.

    CAS  PubMed  Google Scholar 

  19. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther; 1997; 8 (1): 37–44.

    Article  CAS  PubMed  Google Scholar 

  20. Dembinski JL, Spaeth EL, Fueyo J, Gomez-Manzano C, Studeny M, Andreeff M et al. Reduction of nontarget infection and systemic toxicity by targeted delivery of conditionally replicating viruses transported in mesenchymal stem cells. Cancer Gene Ther; 2010; 17 (4): 289–297.

    Article  CAS  PubMed  Google Scholar 

  21. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev; 2009; 18 (5): 683–692.

    Article  CAS  PubMed  Google Scholar 

  22. Loebinger MR, Janes SM . Stem cells as vectors for antitumour therapy. Thorax; 2010; 65 (4): 362–369.

    Article  PubMed  Google Scholar 

  23. Fritz V, Jorgensen C . Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr Stem Cell Res Ther; 2008; 3 (1): 32–42.

    Article  CAS  PubMed  Google Scholar 

  24. Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF et al. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res; 2009; 69 (23): 8862–8867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK . Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant; 2007; 13 (8): 913–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood; 2006; 108 (12): 3890–3897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou LJ, Ord DC, Hughes AL, Tedder TF . Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol; 1991; 147 (4): 1424–1432.

    CAS  PubMed  Google Scholar 

  28. Iuliucci JD, Oliver SD, Morley S, Ward C, Ward J, Dalgarno D et al. Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol; 2001; 41 (8): 870–879.

    Article  CAS  PubMed  Google Scholar 

  29. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ, Giver CR et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood; 2005; 106 (12): 3777–3784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki Y, Nakabayashi Y, Takahashi R . Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA; 2001; 98 (15): 8662–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK . Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell; 2008; 30 (1): 11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rehm M, Huber HJ, Dussmann H, Prehn JH . Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J; 2006; 25 (18): 4338–4349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimber K et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther; 1998; 9 (7): 1083–1092.

    Article  CAS  PubMed  Google Scholar 

  34. Xu F, Li S, Li XL, Guo Y, Zou BY, Xu R et al. Phase I and biodistribution study of recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene and ganciclovir administration in patients with head and neck cancer and other malignant tumors. Cancer Gene Ther; 2009; 16 (9): 723–730.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez RD, Gomez-Navarro J, Wang M, Barnes MN, Strong TV, Arani RB et al. Adenoviral-mediated suicide gene therapy for ovarian cancer. Mol Ther; 2000; 2 (5): 524–530.

    Article  CAS  PubMed  Google Scholar 

  36. Gholamrezanezhad A, Mirpour S, Bagheri M, Mohamadnejad M, Alimoghaddam K, Abdolahzadeh L et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl Med Biol; 2011; 38 (7): 961–967.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou DH, Huang SL, Wu YF, Wei J, Chen GY, Li Y et al. [The expansion and biological characteristics of human mesenchymal stem cells]. Zhonghua Er Ke Za Zhi; 2003; 41 (8): 607–610.

    PubMed  Google Scholar 

  38. Koppula PR, Chelluri LK, Polisetti N, Vemuganti GK . Histocompatibility testing of cultivated human bone marrow stromal cells - a promising step towards pre-clinical screening for allogeneic stem cell therapy. Cell Immunol; 2009; 259 (1): 61–65.

    Article  CAS  PubMed  Google Scholar 

  39. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res; 1986; 46 (10): 5276–5281.

    CAS  PubMed  Google Scholar 

  40. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res; 1999; 59 (7): 1417–1421.

    CAS  PubMed  Google Scholar 

  41. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA; 1992; 89 (1): 33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res; 1993; 53 (21): 5274–5283.

    CAS  PubMed  Google Scholar 

  43. Zhang L, Wikenheiser KA, Whitsett JA . Limitations of retrovirus-mediated HSV-tk gene transfer to pulmonary adenocarcinoma cells in vitro and in vivo. Hum Gene Ther; 1997; 8 (5): 563–574.

    Article  CAS  PubMed  Google Scholar 

  44. Agard C, Ligeza C, Dupas B, Izembart A, El Kouri C, Moullier P et al. Immune-dependent distant bystander effect after adenovirus-mediated suicide gene transfer in a rat model of liver colorectal metastasis. Cancer Gene Ther; 2001; 8 (2): 128–136.

    Article  CAS  PubMed  Google Scholar 

  45. Traversari C, Marktel S, Magnani Z, Mangia P, Russo V, Ciceri F et al. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood; 2007; 109 (11): 4708–4715.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobsen T, Sifontis N . Drug interactions and toxicities associated with the antiviral management of cytomegalovirus infection. Am J Health Syst Pharm; 2010; 67 (17): 1417–1425.

    Article  CAS  PubMed  Google Scholar 

  47. Kaufmann SH, Earnshaw WC . Induction of apoptosis by cancer chemotherapy. Exp Cell Res; 2000; 256 (1): 42–49.

    Article  CAS  PubMed  Google Scholar 

  48. Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood; 2007; 110 (10): 3557–3560.

    Article  CAS  PubMed  Google Scholar 

  49. Aghajanian C, Blessing JA, Darcy KM, Reid G, DeGeest K, Rubin SC et al. A phase II evaluation of bortezomib in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol; 2009; 115 (2): 215–220.

    Article  CAS  PubMed  Google Scholar 

  50. Hoang T, Campbell TC, Zhang C, Kim K, Kolesar JM, Oettel KR et al. Vorinostat and bortezomib as third-line therapy in patients with advanced non-small cell lung cancer: a Wisconsin Oncology Network Phase II study. Invest New Drugs; 2013; 32 (1): 195–199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood; 2009; 114 (5): 1046–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bu R, Hussain AR, Al-Obaisi KA, Ahmed M, Uddin S, Al-Kuraya KS . Bortezomib inhibits proteasomal degradation of IkappaBalpha and induces mitochondrial dependent apoptosis in activated B-cell diffuse large B-cell lymphoma. Leuk Lymphoma; 2013; 55 (2): 415–424.

    Article  PubMed  CAS  Google Scholar 

  53. Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S et al. Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther; 2009; 8 (11): 3140–3150.

    Article  CAS  PubMed  Google Scholar 

  54. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol; 2007; 171 (2): 513–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alonso MM, Gomez-Manzano C, Jiang H, Bekele NB, Piao Y, Yung WK et al. Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo. Cancer Gene Ther; 2007; 14 (8): 756–761.

    Article  CAS  PubMed  Google Scholar 

  56. Deveraux QL, Takahashi R, Salvesen GS, Reed JC . X-linked IAP is a direct inhibitor of cell-death proteases. Nature; 1997; 388 (6639): 300–304.

    Article  CAS  PubMed  Google Scholar 

  57. Chen L, Smith L, Wang Z, Smith JB . Preservation of caspase-3 subunits from degradation contributes to apoptosis evoked by lactacystin: any single lysine or lysine pair of the small subunit is sufficient for ubiquitination. Mol Pharmacol; 2003; 64 (2): 334–345.

    Article  CAS  PubMed  Google Scholar 

  58. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J . Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med; 1998; 188 (1): 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang XH, Feng ZE, Yan M, Hanada S, Zuo H, Yang CZ et al. XIAP is a predictor of cisplatin-based chemotherapy response and prognosis for patients with advanced head and neck cancer. PLoS One; 2012; 7 (3): e31601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moussata D, Amara S, Siddeek B, Decaussin M, Hehlgans S, Paul-Bellon R et al. XIAP as a radioresistance factor and prognostic marker for radiotherapy in human rectal adenocarcinoma. Am J Pathol; 2012; 181 (4): 1271–1278.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Zhu J, Tang Y, Li F, Zhou H, Peng B et al. X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma. Diagn Pathol; 2011; 6: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ibrahim AM, Mansour IM, Wilson MM, Mokhtar DA, Helal AM, Al Wakeel HM . Study of survivin and X-linked inhibitor of apoptosis protein (XIAP) genes in acute myeloid leukemia (AML). Lab Hematol; 2012; 18 (1): 1–10.

    Article  PubMed  Google Scholar 

  63. Chen DJ, Huerta S . Smac mimetics as new cancer therapeutics. Anticancer Drugs; 2009; 20 (8): 646–658.

    Article  CAS  PubMed  Google Scholar 

  64. Wu MS, Wang GF, Zhao ZQ, Liang Y, Wang HB, Wu MY et al. Smac mimetics in combination with TRAIL selectively target cancer stem cells in nasopharyngeal carcinoma. Mol Cancer Ther; 2013; 12 (9): 1728–1737.

    Article  CAS  PubMed  Google Scholar 

  65. Allensworth JL, Sauer SJ, Lyerly HK, Morse MA, Devi GR . Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Res Treat; 2013; 137 (2): 359–371.

    Article  CAS  PubMed  Google Scholar 

  66. Dai Y, Liu M, Tang W, Li Y, Lian J, Lawrence TS et al. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB. BMC Cancer; 2009; 9: 392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bockbrader KM, Tan M, Sun Y . A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene; 2005; 24 (49): 7381–7388.

    Article  CAS  PubMed  Google Scholar 

  68. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res; 2009; 69 (23): 8932–8940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther; 2005; 12 (10): 835–848.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Prevention Research Institute of Texas RP110553 P1 (MKB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Bouchier-Hayes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, M., Hoyos, V., Yagyu, S. et al. Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther 21, 472–482 (2014). https://doi.org/10.1038/cgt.2014.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.53

This article is cited by

Search

Quick links