Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells

Abstract

Murine dendritic cells (DC) transduced to express the Type-1 transactivator T-bet (i.e. mDC.Tbet) and delivered intratumorally as a therapy are superior to control wild-type DC in slowing the growth of established subcutaneous MCA205 sarcomas in vivo. Optimal antitumor efficacy of mDC.Tbet-based gene therapy was dependent on host natural killer (NK) cells and CD8+ T cells, and required mDC.Tbet expression of major histocompatibility complex class I molecules, but was independent of the capacity of the injected mDC.Tbet to produce proinflammatory cytokines (interleukin-12 family members or interferon-γ) or to migrate to tumor-draining lymph nodes based on CCR7 ligand chemokine recruitment. Conditional (CD11c-DTR) or genetic (BATF3−/−) deficiency in host antigen-crosspresenting DC did not diminish the therapeutic action of intratumorally delivered wild-type mDC.Tbet. Interestingly, we observed that intratumoral delivery of mDC.Tbet (versus control mDC.Null) promoted the acute infiltration of NK cells and naive CD45RB+ T cells into the tumor microenvironment (TME) in association with elevated expression of NK- and T-cell-recruiting chemokines by mDC.Tbet. When taken together, our data support a paradigm for extranodal (cross)priming of therapeutic Type-1 immunity in the TME after intratumoral delivery of mDC.Tbet-based gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Steinman RM . The dendritic cell system and its role in immunogenicity. Ann Rev Immunol 1991; 9: 271–296.

    Article  CAS  Google Scholar 

  2. Mellman I, Steinman RM . Dendritic cells: specialized and regulated antigen processing machines. Cell 2001; 106: 255–258.

    Article  CAS  PubMed  Google Scholar 

  3. Steinman RM . Dendritic cells: understanding immunogenicity. Eur J Immunol 2007; 37 (Suppl 1): S53–S60.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson AE, Sayers BL, Haniffa MA, Swan DJ, Diboll J, Wang XN et al. Differential regulation of naïve and memory CD4+ T cells by alternatively activated dendritic cells. J Leukoc Biol 2008; 84: 124–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arens R, Schoenberger SP . Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev 2010; 235: 190–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watchmaker PB, Berk E, Muthuswamy R, Mailliard RB, Urban JA, Kirkwood JM et al. Independent regulation of chemokine responsiveness and cytolytic function versus CD8+ T cell expansion by dendritic cells. J Immunol 2010; 184: 591–597.

    Article  CAS  PubMed  Google Scholar 

  7. Steinman RM, Banchereau J . Taking dendritic cells into medicine. Nature 2007; 449: 419–426.

    Article  CAS  PubMed  Google Scholar 

  8. Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z et al. Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 2011; 3: 1203–1222.

    Article  CAS  PubMed  Google Scholar 

  9. Wu R, Forget MA, Chacon J, Bernatchez C, Haymaker C, Chen JQ et al. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 2012; 18: 160–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber J, Atkins M, Hwu P, Radvanyi L, Sznol M, Yee C et alImmunotherapy Task Force of the NCI Investigational Drug Steering Committee. White paper on adoptive cell therapy for cancer with tumor-infiltrating lymphocytes: a report of the CTEP subcommittee on adoptive cell therapy. Clin Cancer Res 2011; 17: 1664–1673.

    Article  CAS  PubMed  Google Scholar 

  11. Klebanoff CA, Gattinoni L, Restifo NP . CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 2006; 211: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lazarevic V, Glimcher LH . T-bet in disease. Nat Immunol 2011; 12: 597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lipscomb MW, Chen L, Taylor JL, Goldbach C, Watkins SC, Kalinski P et al. Ectopic T-bet expression licenses dendritic cells for IL-12-independent priming of type 1 T cells in vitro. J Immunol 2009; 183: 7250–7258.

    Article  CAS  PubMed  Google Scholar 

  14. Qu Y, Chen L, Pardee AD, Taylor JL, Wesa AK, Storkus WJ . Intralesional delivery of dendritic cells engineered to express T-bet promotes protective type 1 immunity and the normalization of the tumor microenvironment. J Immunol 2010; 185: 2895–2902.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Divito SJ, Shufesky WJ, Sumpter T, Wang H, Tkacheva OA et al. Dendritic cell therapies in transplantation revisited: deletion of recipient DCs deters the effect of therapeutic DCs. Am J Transplant 2012; 12: 1398–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vignali DA, Kuchroo VK . IL-12 family cytokines: immunological playmakers. Nat Immunol 2012; 13: 722–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA . Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 2005; 207: 145–157.

    Article  CAS  PubMed  Google Scholar 

  18. Adam C, King S, Allgeier T, Braumüller H, Lüking C, Mysliwietz J et al. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 2005; 106: 338–344.

    Article  CAS  PubMed  Google Scholar 

  19. Mailliard RB, Son YI, Redlinger R, Coates PT, Giermasz A, Morel PA et al. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 2003; 171: 2366–2373.

    Article  CAS  PubMed  Google Scholar 

  20. McDonnell AM, Pro sser AC, van Bruggen I, Robinson BW, Currie AJ . CD8α+ DC are not the sole subset cross-presenting cell-associated tumor antigens from a solid tumor. Eur J Immunol 2010; 40: 1617–1627.

    Article  CAS  PubMed  Google Scholar 

  21. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    Article  CAS  PubMed  Google Scholar 

  22. den Haan JM, Lehar SM, Bevan MJ . CD8+ but not CD8neg dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000; 192: 1685–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 2008; 322: 1097–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006; 176: 803–810.

    Article  CAS  PubMed  Google Scholar 

  25. Bajaña S, Roach K, Turner S, Paul J, Kovats S . IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J Immunol 2012; 189: 3368–3377.

    Article  PubMed  Google Scholar 

  26. Yen JH, Kong W, Ganea D . IFN-β inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J Immunol 2010; 184: 3478–3486.

    Article  CAS  PubMed  Google Scholar 

  27. Olmos S, Stukes S, Ernst JD . Ectopic activation of Mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7−/− mice. J Immunol 2010; 184: 895–901.

    Article  CAS  PubMed  Google Scholar 

  28. Feijoó E, Alfaro C, Mazzolini G, Serra P, Peñuelas I, Arina A et al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 2005; 116: 275–281.

    Article  PubMed  Google Scholar 

  29. Fujiwara S, Wada H, Miyata H, Kawada J, Kawabata R, Nishikawa H et al. Clinical trial of the intratumoral administration of labeled DC combined with systemic chemotherapy for esophageal cancer. J Immunother 2012; 35: 513–521.

    Article  CAS  PubMed  Google Scholar 

  30. Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 2003; 9: 1151–1157.

    Article  CAS  PubMed  Google Scholar 

  31. Smith AL, Fazekas de St Groth B . Antigen-pulsed CD8α+ dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. J Exp Med 1999; 189: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirk CJ, Hartigan-O’Connor D, Mulé JJ . The dynamics of the T-cell antitumor response: chemokine-secreting dendritic cells can prime tumor-reactive T cells extranodally. Cancer Res 2001; 61: 8794–8802.

    CAS  PubMed  Google Scholar 

  33. Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S, Hu G et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 2012; 37: 660–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muthuswamy R, Mueller-Berghaus J, Haberkorn U, Reinhart TA, Schadendorf D, Kalinski P . PGE2 transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL19 and attract naive T cells. Blood 2010; 116: 1454–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marelli-Berg FM, Cannella L, Dazzi F, Mirenda V . The highway code of T cell trafficking. J Pathol 2008; 214: 179–189.

    Article  CAS  PubMed  Google Scholar 

  36. Cose S, Brammer C, Khanna KM, Masopust D, Lefrançois L . Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur J Immunol 2006; 36: 1423–1433.

    Article  CAS  PubMed  Google Scholar 

  37. Zippelius A, Bioley G, Le Gal FA, Rufer N, Brandes M, Batard P et al. Human thymus exports naive CD8 T cells that can home to nonlymphoid tissues. J Immunol 2004; 172: 2773–2777.

    Article  CAS  PubMed  Google Scholar 

  38. Lewis M, Tarlton JF, Cose S . Memory versus naive T-cell migration. Immunol Cell Biol 2008; 86: 226–231.

    Article  CAS  PubMed  Google Scholar 

  39. Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B . Antigen-specific primary activation of CD8+ T cells within the liver. J Immunol 2001; 166: 5430–5438.

    Article  CAS  PubMed  Google Scholar 

  40. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004; 5: 141–149.

    Article  CAS  PubMed  Google Scholar 

  41. Igoucheva O, Grazzini M, Pidich A, Kemp DM, Larijani M, Farber M et al. Immunotargeting and eradication of orthotopic melanoma using a chemokine-enhanced DNA vaccine. Gene Therapy 2013. doi:10.1038/gt.2013.17.

    Article  CAS  PubMed  Google Scholar 

  42. Robertson MJ . Role of chemokines in the biology of natural killer cells. J Leukoc Biol 2002; 71: 173–183.

    CAS  PubMed  Google Scholar 

  43. Gustafsson K, Ingelsten M, Bergqvist L, Nyström J, Andersson B, Karlsson-Parra A . Recruitment and activation of natural killer cells in vitro by a human dendritic cell vaccine. Cancer Res 2008; 68: 5965–5971.

    Article  CAS  PubMed  Google Scholar 

  44. Inngjerdingen M, Damaj B, Maghazachi AA . Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and I-309. J Immunol 2000; 164: 4048–4054.

    Article  CAS  PubMed  Google Scholar 

  45. Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH . Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. Oncoimmunology 2012; 1: 448–457.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gustafsson K, Junevik K, Werlenius O, Holmgren S, Karlsson-Parra A, Andersson PO . Tumour-loaded α-type 1-polarized dendritic cells from patients with chronic lymphocytic leukaemia produce a superior NK-, NKT- and CD8+ T cell-attracting chemokine profile. Scand J Immunol 2011; 74: 318–326.

    Article  CAS  PubMed  Google Scholar 

  47. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2012; 2: 765.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morris MA, Ley K . Trafficking of natural killer cells. Curr Mol Med 2004; 4: 431–438.

    Article  CAS  PubMed  Google Scholar 

  49. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN . Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006; 440: 890–895.

    Article  CAS  PubMed  Google Scholar 

  50. Coelho AL, Schaller MA, Benjamim CF, Orlofsky AZ, Hogaboam CM, Kunkel SL . The chemokine CCL6 promotes innate immunity via immune cell activation and recruitment. J Immunol 2007; 179: 5474–5482.

    Article  CAS  PubMed  Google Scholar 

  51. Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U et al. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 2010; 11: 313–320.

    Article  CAS  PubMed  Google Scholar 

  52. Bernardini G, Sciumè G, Bosisio D, Morrone S, Sozzani S, Santoni A . CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 2008; 111: 3626–3634.

    Article  CAS  PubMed  Google Scholar 

  53. Bai Z, Hayasaka H, Kobayashi M, Li W, Guo Z, Jang MH et al. CXC chemokine ligand 12 promotes CCR7-dependent naive T cell trafficking to lymph nodes and Peyer’s patches. J Immunol 2009; 182: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  54. Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM . IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 2008; 181: 8576–8584.

    Article  CAS  PubMed  Google Scholar 

  55. Carbone E, Terrazzano G, Ruggiero G, Zanzi D, Ottaiano A, Manzo C et al. Recognition of autologous dendritic cells by human NK cells. Eur J Immunol 1999; 29: 4022–4029.

    Article  CAS  PubMed  Google Scholar 

  56. Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7: 297–303.

    Article  CAS  PubMed  Google Scholar 

  57. Cooper EH, Forbes MA, Hambling MH . Serum beta 2-microglobulin and C reactive protein concentrations in viral infections. J Clin Pathol 1984; 37: 1140–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hee CS, Beerbaum M, Loll B, Ballaschk M, Schmieder P, Uchanska-Ziegler B et al. Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics 2013; 65: 157–172.

    Article  CAS  PubMed  Google Scholar 

  59. Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 2011; 34: 85–95.

    Article  CAS  PubMed  Google Scholar 

  60. Nishimura F, Dusak JE, Eguchi J, Zhu X, Gambotto A, Storkus WJ et al. Adoptive transfer of type 1 CTL mediates effective anti-central nervous system tumor response: critical roles of IFN-inducible protein-10. Cancer Res 2006; 66: 4478–4487.

    Article  CAS  PubMed  Google Scholar 

  61. Song S, Zhang K, You H, Wang J, Wang Z, Yan C et al. Significant anti-tumour activity of adoptively transferred T cells elicited by intratumoral dendritic cell vaccine injection through enhancing the ratio of CD8+ T cell/regulatory T cells in tumour. Clin Exp Immunol 2010; 162: 75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujita M, Zhu X, Ueda R, Sasaki K, Kohanbash G, Kastenhuber ER et al. Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 2009; 69: 1587–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pellegatta S, Poliani PL, Stucchi E, Corno D, Colombo CA, Orzan F et al. Intra-tumoral dendritic cells increase efficacy of peripheral vaccination by modulation of glioma microenvironment. Neuro Oncol 2010; 12: 377–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Todd Reinhart and Per Basse for helpful comments and information provided during the performance of this work and the drafting of this manuscript. We also thank Drs David Stroncek and Ping Jin (NIH) for performing the gene expression microarray analysis on hDC.Tbet versus control hDC. This work was supported by NIH Grants P50 CA121973, P01 CA109688 and R01 CA169118 (to WJS). This project used the UPCI’s Vector Core Facility and the Cell and Tissue Imaging Facility (CTIF) supported in part by the University of Pittsburgh CCSG award P30 CA047904. DBL was supported by a Postdoctoral Fellowship (PF-11-151-01-LIB) from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Storkus.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Taylor, J., Sabins, N. et al. Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells. Cancer Gene Ther 20, 469–477 (2013). https://doi.org/10.1038/cgt.2013.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.42

Keywords

This article is cited by

Search

Quick links