Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The use of hypoxic cultured mesenchymal stem cell for oncolytic virus therapy

Abstract

The safety of oncolytic viruses, such as conditionally replicative adenoviruses (CRAds), has been validated in clinical trials for cancer therapy. Their antitumor efficacy is limited by the presence of preexisting neutralizing antibodies (NAbs). Mesenchymal stem cells (MSCs) are attractive as a cellular vehicle to carry antitumor agents, not only because they are easily obtained and expanded to great numbers in vitro, but also because of their ability to migrate and engraft to tumors. MSCs expanded under hypoxic conditions decrease in replicative senescence and increase in proliferation capacity and differentiation potentials. However it remains to be clarified whether these hypoxic MSCs also are good carriers for the delivery of CRAds to tumor cells in the presence of NAbs. This study firstly demonstrated hypoxic MSCs with an increased ability to migrate toward tumors through the upregulation of chemokine receptors, such as CXCR4 and CX3CR1. It is then demonstrated that hypoxic MSCs has the capacity to carry CRAds, without inducing apoptosis, for up to one week. Using an in vitro coculture with human colon cancer cells and with intraperitoneally (i.p.) and subcutaneously (s.c.) developed human colon cancer xenografts, it is demonstrated that hypoxic MSCs are able to protect CRAds from attack by NAbs, thereby successfully delivering them to the target tumor cells. These results show that hypoxic MSCs can serve as cell carriers for CRAds and may help to develop new strategies against cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lin E, Nemunaitis J . Oncolytic viral therapies. Cancer Gene Ther 2004; 11: 643–664.

    Article  CAS  PubMed  Google Scholar 

  2. Parato KA, Senger D, Forsyth PA, Bell JC . Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5: 965–976.

    CAS  PubMed  Google Scholar 

  3. Huebner RJ, Rowe WP, Schatten WE, Smith RR, Thomas LB . Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 1956; 9: 1211–1218.

    Article  CAS  PubMed  Google Scholar 

  4. Southam CM . Present status of oncolytic virus studies. Trans N Y Acad Sci 1960; 22: 657–673.

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5: 881–887.

    Article  CAS  PubMed  Google Scholar 

  6. Wakimoto H, Ikeda K, Abe T, Ichikawa T, Hochberg FH, Ezekowitz RA et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther 2002; 5: 275–282.

    Article  CAS  PubMed  Google Scholar 

  7. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.

    Article  CAS  PubMed  Google Scholar 

  8. Ye X, Jerebtsova M, Ray PE . Liver bypass significantly increases the transduction efficiency of recombinant adenoviral vectors in the lung, intestine, and kidney. Hum Gene Ther 2000; 11: 621–627.

    Article  CAS  PubMed  Google Scholar 

  9. Lang SI, Giese NA, Rommelaere J, Dinsart C, Cornelis JJ . Humoral immune responses against minute virus of mice vectors. J Gene Med 2006; 8: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Yu DC, Charlton D, Henderson DR . Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum Gene Ther 2000; 11: 1553–1567.

    Article  CAS  PubMed  Google Scholar 

  11. Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J et al. Impact of human neutralizing antibodies on antitumor efficacy of an oncolytic adenovirus in a murine model. Clin Cancer Res 2004; 10: 7199–7206.

    Article  CAS  PubMed  Google Scholar 

  12. Power AT, Wang J, Falls TJ, Paterson JM, Parato KA, Lichty BD et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 2007; 15: 123–130.

    Article  CAS  PubMed  Google Scholar 

  13. Hamada K, Desaki J, Nakagawa K, Zhang T, Shirakawa T, Gotoh A et al. Carrier cell-mediated delivery of a replication-competent adenovirus for cancer gene therapy. Mol Ther 2007; 15: 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  14. Coukos G, Makrigiannakis A, Kang EH, Caparelli D, Benjamin I, Kaiser LR et al. Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer. Clin Cancer Res 1999; 5: 1523–1537.

    CAS  PubMed  Google Scholar 

  15. Cole C, Qiao J, Kottke T, Diaz RM, Ahmed A, Sanchez-Perez L et al. Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nat Med 2005; 11: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  16. Ong HT, Hasegawa K, Dietz AB, Russell SJ, Peng KW . Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 2007; 14: 324–333.

    Article  CAS  PubMed  Google Scholar 

  17. Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML et al. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004; 64: 5934–5937.

    Article  CAS  PubMed  Google Scholar 

  18. Ilett EJ, Barcena M, Errington-Mais F, Griffin S, Harrington KJ, Pandha HS et al. Internalization of oncolytic reovirus by human dendritic cell carriers protects the virus from neutralization. Clin Cancer Res 2011; 17: 2767–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L . Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006; 5: 755–766.

    Article  CAS  PubMed  Google Scholar 

  20. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 2009; 15: 7246–7255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dembinski JL, Spaeth EL, Fueyo J, Gomez-Manzano C, Studeny M, Andreeff M et al. Reduction of nontarget infection and systemic toxicity by targeted delivery of conditionally replicating viruses transported in mesenchymal stem cells. Cancer Gene Ther 2010; 17: 289–297.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmed AU, Rolle CE, Tyler MA, Han Y, Sengupta S, Wainwright DA et al. Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model. Mol Ther 2010; 18: 1846–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC et al. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 2005; 11: 7749–7756.

    Article  CAS  PubMed  Google Scholar 

  24. Giordano A, Galderisi U, Marino IR . From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27–35.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 2011; 117: 459–469.

    Article  CAS  PubMed  Google Scholar 

  26. Hung SP, Ho JH, Shih YR, Lo T, Lee OK . Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res 2012; 30: 260–266.

    Article  PubMed  Google Scholar 

  27. Grayson WL, Zhao F, Bunnell B, Ma T . Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 2007; 358: 948–953.

    Article  CAS  PubMed  Google Scholar 

  28. Lennon DP, Edmison JM, Caplan AI . Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 2001; 187: 345–355.

    Article  CAS  PubMed  Google Scholar 

  29. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One 2007; 2: e416.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ . Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002; 20: 530–541.

    Article  PubMed  Google Scholar 

  31. Chen MJ, Green NK, Reynolds GM, Flavell JR, Mautner V, Kerr DJ et al. Enhanced efficacy of Escherichia coli nitroreductase/CB1954 prodrug activation gene therapy using an E1B-55K-deleted oncolytic adenovirus vector. Gene Ther 2004; 11: 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  32. Deak E, Seifried E, Henschler R . Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications. Int Rev Immunol 2010; 29: 514–529.

    Article  CAS  PubMed  Google Scholar 

  33. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC . Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012; 2012: 342968.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104: 2643–2645.

    Article  CAS  PubMed  Google Scholar 

  35. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106: 419–427.

    Article  CAS  PubMed  Google Scholar 

  36. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R . Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol Ther 2009; 17: 1667–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Castro J, Trigueros C, Madrenas J, Perez-Simon JA, Rodriguez R, Menendez P . Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med 2008; 12: 2552–2565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 2007; 25: 2371–2382.

    Article  CAS  PubMed  Google Scholar 

  40. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 2008; 3: e2213.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wislet-Gendebien S, Leprince P, Moonen G, Rogister B . Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 2003; 116 (Pt 16): 3295–3302.

    Article  CAS  PubMed  Google Scholar 

  42. Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A . Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 2010; 95: 47–56.

    Article  PubMed  Google Scholar 

  43. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 2009; 69: 8932–8940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP . Stem cell transplantation: the lung barrier. Transplant Proc 2007; 39: 573–576.

    Article  CAS  PubMed  Google Scholar 

  45. Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K et al. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 2003; 7: 354–365.

    Article  CAS  PubMed  Google Scholar 

  46. Choi JW, Lee JS, Kim SW, Yun CO . Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev 2011; 64: 720–729.

    Article  PubMed  Google Scholar 

  47. Yu W, Fang H . Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7: 141–148.

    Article  PubMed  Google Scholar 

  48. Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY et al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 2011; 141: 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  49. Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC . Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2012 e-pub ahead of print 22 October. doi:10.1038/onc.2012.458.

    Article  PubMed  Google Scholar 

  50. Sachs MD, Ramamurthy M, Poel H, Wickham TJ, Lamfers M, Gerritsen W et al. Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells. Cancer Gene Ther 2004; 11: 477–486.

    Article  CAS  PubMed  Google Scholar 

  51. Bridgewater JA, Springer CJ, Knox RJ, Minton NP, Michael NP, Collins MK . Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer 1995; 31A: 2362–2370.

    Article  CAS  PubMed  Google Scholar 

  52. Green NK, Youngs DJ, Neoptolemos JP, Friedlos F, Knox RJ, Springer CJ et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther 1997; 4: 229–238.

    CAS  PubMed  Google Scholar 

  53. Lee RH, Yoon N, Reneau JC, Prockop DJ . Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 2012; 11: 825–835.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received grants supported by the Veterans General Hospital-Taipei (V99E1-011), National Science Council (101-2321-B-010-012-; 101-2314-B-010-028-MY3) and National Yang-Ming University, Ministry of Education.

Author contributions

This study was concepted and designed by YFH, MJC and SCH. YFH performed collection and/or assembly of data. YFH, MJC and SCH performed data analysis and interpretation. YFH and SCH wrote the manuscript. YFH and MJC approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-C Hung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YF., Chen, MJ., Wu, MH. et al. The use of hypoxic cultured mesenchymal stem cell for oncolytic virus therapy. Cancer Gene Ther 20, 308–316 (2013). https://doi.org/10.1038/cgt.2013.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.22

Keywords

Search

Quick links