Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cap-dependent mRNA translation and the ubiquitin-proteasome system cooperate to promote ERBB2-dependent esophageal cancer phenotype

Abstract

Pathological post-transcriptional control of the proteome composition is a central feature of malignancy. Two steps in this pathway, eIF4F-driven cap-dependent mRNA translation and the ubiquitin-proteasome system (UPS), are deregulated in most if not all cancers. We tested a hypothesis that eIF4F is aberrantly activated in human esophageal adenocarcinoma (EAC) and requires elevated rates of protein turnover and proteolysis and thereby activated UPS for its pro-neoplastic function. Here, we show that 80% of tumors and cell lines featuring amplified ERBB2 display an aberrantly activated eIF4F. Direct genetic targeting of the eIF4F in ERBB2-amplified EAC cells with a constitutively active form of the eIF4F repressor 4E-BP1 decreased colony formation and proliferation and triggered apoptosis. In contrast, suppression of m-TOR-kinase activity towards 4E-BP1with rapamycin only modestly inhibited eIF4F-driven cap-dependent translation and EAC malignant phenotype; and promoted feedback activation of other cancer pathways. Our data show that co-treatment with 2 FDA-approved agents, the m-TOR inhibitor rapamycin and the proteasome inhibitor bortezomib, leads to strong synergistic growth-inhibitory effects. Moreover, direct targeting of eIF4F with constitutively active 4E-BP1 is significantly more potent in collaboration with bortezomib than rapamycin. These data support the hypothesis that a finely tuned balance between eIF4F-driven protein synthesis and proteasome-mediated protein degradation is required for the maintenance of ERBB2-mediated EAC malignant phenotype. Altogether, our study supports the development of pharmaceuticals to directly target eIF4F as most efficient strategy; and provides a clear rationale for the clinical evaluation of combination therapy with m-TOR inhibitors and bortezomib for EAC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dahlberg PS, Jacobson BA, Dahal G, Fink JM, Kratzke RA, Maddaus MA et al. ERBB2 amplifications in esophageal adenocarcinoma. Ann Thorac Surg 2004; 78: 1790–1800.

    Article  Google Scholar 

  2. Dahlberg PS, Ferrin LF, Grindle SM, Nelson CM, Hoang CD, Jacobson B . Gene expression profiles in esophageal adenocarcinoma. Ann Thorac Surg 2004; 77: 1008–1015.

    Article  Google Scholar 

  3. Schoppmann SF, Jesch B, Friedrich J, Wrba F, Schultheis A, Pluschnig U et al. Expression of Her-2 in carcinomas of the esophagus. Am J Surg Pathol 2010; 34: 1868–1873.

    Article  Google Scholar 

  4. Holbro T, Civenni G, Hynes NE . The ErbB receptors and their role in cancer progression. Exp Cell Res 2003; 284: 99–110.

    Article  CAS  Google Scholar 

  5. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  6. Normanno N, Bianco C, De Luca A, Salomon DS . The role of EGF related peptides in tumor growth. Front Biosci 2001; 6: D685–D707.

    Article  CAS  Google Scholar 

  7. Hershey JWB, Miyamoto S . Tranlational control of cancer. In Sonenberg N, Hershey JW, Mathews MB (eds). Translational Control of gene Expression. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2000: 637–654.

    Google Scholar 

  8. Clemens MJ, Bommer UA . Translational control: the cancer connection. Int J Biochem Cell Biol 1999; 31: 1–23.

    Article  CAS  Google Scholar 

  9. Polunovsky VA, Bitterman PB . The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol 2006; 3: 10–17.

    Article  CAS  Google Scholar 

  10. De Benedetti A, Harris AL . eIF4E expression in tumors: its possible role in progression malignancies. Int J Biochem Cell Biol 1999; 31: 59–72.

    Article  CAS  Google Scholar 

  11. Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K, et al. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 2007; 67: 6814–6824.

    Article  CAS  Google Scholar 

  12. Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004; 5: 553–563.

    Article  CAS  Google Scholar 

  13. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2010; 10: 254–266.

    Article  CAS  Google Scholar 

  14. Soni A, Akcakanat A, Singh G, Luyimbazi D, Zheng Y, Kim D et al. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 2008; 7: 1782–1788.

    Article  CAS  Google Scholar 

  15. Gingras AC, Raught B, Sonenberg N . eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–963.

    Article  CAS  Google Scholar 

  16. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence Jr JC et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994; 371: 762–767.

    Article  CAS  Google Scholar 

  17. Haghighat A, Mader S, Pause A, Sonenberg N . Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 1995; 14: 5701–5709.

    Article  CAS  Google Scholar 

  18. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 2001; 15: 2852–2864.

    Article  CAS  Google Scholar 

  19. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010; 328: 1172–1176.

    Article  CAS  Google Scholar 

  20. Li BD, McDonald JC, Nassar R, De Benedetti A . A clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann Surg 1998; 227: 756–761.

    Article  CAS  Google Scholar 

  21. Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J . Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 1999; 18: 2507–2517.

    Article  CAS  Google Scholar 

  22. Berkel HJ, Turbat-Herrera EA, Shi R, de Benedetti A . Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol, Biomarkers Prev 2001; 10: 663–666.

    CAS  Google Scholar 

  23. Nathan CA, Sanders K, Abreo FW, Nassar R, Glass J . Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Cancer Res 2000; 60: 3599–3604.

    CAS  PubMed  Google Scholar 

  24. Salehi Z, Mashayekhi F . Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 2006; 39: 404–409.

    Article  CAS  Google Scholar 

  25. Yeh CJ, Chuang WY, Chao YK, Liu YH, Chang YS, Kuo SY et al. High expression of phosphorylated 4E-binding protein 1 is an adverse prognostic factor in esophageal squamous cell carcinoma. Virchows Arch 2011; 458: 171–178.

    Article  CAS  Google Scholar 

  26. Sato K, Rajendra E, Ohta T . The UPS: a promising target for breast cancer treatment. BMC Biochem 2008; 9 (Suppl 1): S2.

    Article  Google Scholar 

  27. Eldridge AG, O'Brien T . Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 2010; 17: 4–13.

    Article  CAS  Google Scholar 

  28. Hoeller D, Hecker CM, Dikic I . Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006; 6: 776–788.

    Article  CAS  Google Scholar 

  29. Seki N, Toh U, Sayers TJ, Fujii T, Miyagi M, Akagi Y et al. Bortezomib sensitizes human esophageal squamous cell carcinoma cells to TRAIL-mediated apoptosis via activation of both extrinsic and intrinsic apoptosis pathways. Mol Cancer Ther 2010; 9: 1842–1851.

    Article  CAS  Google Scholar 

  30. Lioni M, Noma K, Snyder A, Klein-Szanto A, Diehl JA, Rustgi AK et al. Bortezomib induces apoptosis in esophageal squamous cell carcinoma cells through activation of the p38 mitogen-activated protein kinase pathway. Mol Cancer Ther 2008; 7: 2866–2875.

    Article  CAS  Google Scholar 

  31. Baumeister W, Walz J, Zuhl F, Seemuller E . The proteasome: paradigm of a self-compartmentalizing protease. Cell 1998; 92: 367–380.

    Article  CAS  Google Scholar 

  32. Murata T, Shimotohno K . Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem 2006; 281: 20788–20800.

    Article  CAS  Google Scholar 

  33. Baugh JM, Pilipenko EV . 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol Cell 2004; 16: 575–586.

    Article  CAS  Google Scholar 

  34. Cowan JL, Morley SJ . The proteasome inhibitor, MG132, promotes the reprogramming of translation in C2C12 myoblasts and facilitates the association of hsp25 with the eIF4F complex. Eur J Biochem 2004; 271: 3596–3611.

    Article  CAS  Google Scholar 

  35. Li S, Sonenberg N, Gingras AC, Peterson M, Avdulov S, Polunovsky VA et al. Translational control of cell fate: availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol Cell Biol 2002; 22: 2853–2861.

    Article  CAS  Google Scholar 

  36. Marx C, Yau C, Banwait S, Zhou Y, Scott GK, Hann B, Park JW, Benz CC . Proteasome-regulated ERBB2 and estrogen receptor pathways in breast cancer. Mol Pharmacol 2007; 71: 1525–1534.

    Article  CAS  Google Scholar 

  37. Marx C, Held JM, Gibson BW, Benz CC . ErbB2 trafficking and degradation associated with K48 and K63 polyubiquitination. Cancer Res 2010; 70: 3709–3717.

    Article  CAS  Google Scholar 

  38. Cardoso F, Durbecq V, Laes JF, Badran B, Lagneaux L, Bex F, Desmedt C, Willard-Gallo K, Ross JS, Burny A, Piccart M, Sotiriou C . Bortezomib (PS-341, Velcade) increases the efficacy of trastuzumab (Herceptin) in HER-2-positive breast cancer cells in a synergistic manner. Mol Cancer Ther 2006; 5: 3042–3051.

    Article  CAS  Google Scholar 

  39. Fujita T, Doihara H, Washio K, Kawasaki K, Takabatake D, Takahashi H, Tsukuda K, Ogasawara Y, Shimizu N . Proteasome inhibitor bortezomib increases PTEN expression and enhances trastuzumab-induced growth inhibition in trastuzumab-resistant cells. Anticancer Drugs 2006; 17: 455–462.

    Article  CAS  Google Scholar 

  40. Nahta R, O'Regan RM . Evolving Strategies for Overcoming Resistance to HER2-Directed Therapy: Targeting the PI3K/Akt/mTOR Pathway. Clin Breast Cancer 2010; 10: S72–S78.

    Article  Google Scholar 

  41. Polunovsky VA, Rosenwald IB, Tan AT, White J, Chiang L, Sonenberg N et al. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 1996; 16: 6573–6581.

    Article  CAS  Google Scholar 

  42. Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009; 100: 1393–1399.

    Article  CAS  Google Scholar 

  43. Raught B, Gingras AC, Sonenberg N . The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 2001; 98: 7037–7044.

    Article  CAS  Google Scholar 

  44. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N . Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996; 15: 658–664.

    Article  CAS  Google Scholar 

  45. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J . Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002; 16: 1472–1487.

    Article  CAS  Google Scholar 

  46. Pullen N, Thomas G . The modular phosphorylation and activation of p70s6k. FEBS Lett 1997; 410: 78–82.

    Article  CAS  Google Scholar 

  47. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65: 7052–7058.

    Article  CAS  Google Scholar 

  48. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A . Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005; 4: 1533–1540.

    Article  CAS  Google Scholar 

  49. Kurmasheva RT, Huang S, Houghton PJ . Predicted mechanisms of resistance to mTOR inhibitors. Br J Cancer 2006; 95: 955–960.

    Article  CAS  Google Scholar 

  50. Rousseau D, Gingras AC, Pause A, Sonenberg N . The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 1996; 13: 2415–2420.

    CAS  Google Scholar 

  51. Polunovsky VA, Gingras AC, Sonenberg N, Peterson M, Tan A, Rubins JB et al. Translational control of the antiapoptotic function of Ras. J Biol Chem 2000; 275: 24776–24780.

    Article  CAS  Google Scholar 

  52. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  Google Scholar 

  53. Hsieh AC, Ruggero D . Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 2010; 16: 4914–4920.

    Article  CAS  Google Scholar 

  54. Satheesha S, Cookson VJ, Coleman LJ, Ingram N, Madhok B, Hanby AM et al. Response to mTOR inhibition: activity of eIF4E predicts sensitivity in cell lines and acquired changes in eIF4E regulation in breast cancer. Mol Cancer 2011; 10: 19.

    Article  CAS  Google Scholar 

  55. Hoang B, Frost P, Shi Y, Belanger E, Benavides A, Pezeshkpour G et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 2010; 116: 4560–4568.

    Article  CAS  Google Scholar 

  56. Saunders P, Cisterne A, Weiss J, Bradstock KF, Bendall LJ . The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica 2011; 96: 69–77.

    Article  CAS  Google Scholar 

  57. Ko JK, Choi CH, Kim YK, Kwon CH . The Proteasome Inhibitor MG-132 Induces AIF Nuclear Translocation Through Down-Regulation of ERK and Akt/mTOR Pathway. Neurochem Res 2011; 36: 722–731.

    Article  CAS  Google Scholar 

  58. Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H, Mikami S, Martineau Y, Ronai ZA, Sonenberg N . Translational Homeostasis via the mRNA Cap-Binding Protein, eIF4E. Mol Cell 2012; PMID: 22578813 (e-pub ahead of print).

Download references

Acknowledgements

We are indebted to Dr Zofia Zukowska, Department of Integrative Biology and Physiology, University of Minnesota for the encouragement, tremendous support and providing the possibility to complete this work. We would like to acknowledge the assistance of the Flow Cytometry Core Facility of the Masonic Cancer Center, University of Minnesota, supported in part by P30 CA77598.

Grant and Financial Support: This work was supported by VFW Surgical Oncology Award, American Cancer Society IRG and Minnesota Medical Foundation to P.S.D.

Ethics statement: The study complied with the Declaration of Helsinki. Normal and malignant (adenocarcinoma) esophageal tissue samples (n=12) were obtained from the Cooperative Human Tissue Network and from the clinical esophageal cancer practice approved by the University of Minnesota Institutional Review Board. All patients gave written informed consent before surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O A Issaenko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issaenko, O., Bitterman, P., Polunovsky, V. et al. Cap-dependent mRNA translation and the ubiquitin-proteasome system cooperate to promote ERBB2-dependent esophageal cancer phenotype. Cancer Gene Ther 19, 609–618 (2012). https://doi.org/10.1038/cgt.2012.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.39

Keywords

Search

Quick links