Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenoviral targeting of gene expression to tumors

Abstract

Using biochemical, imaging and histological methods, we employed transcriptional targeting to increase the specificity of tumor gene expression in vivo for intravenously administered recombinant adenovirus vectors. Surprisingly, the relative specificity of tumor expression in comparison with other tissues was increased for a constitutively expressing recombinant adenovirus, AdCMVLuc, by simply reducing the viral dose. Even at lower doses, however, the high frequency of viral infection and transgene expression in the liver using constitutive promoters still represents a substantial problem. To further augment tumor specificity, we constructed a series of adenoviruses expressing luciferase from several other promoters and tested their ability to selectively transcribe genes in tumor cells, both in vitro and in vivo. Constitutively active viral promoters (RSV, SRĪ±) varied widely in their tumor selectivity, but hypoxia-responsive promoters (carbonic anhydrase 9, PAI-1, SOD2 and several chimeric constructs) showed the most tumor-selective expression. Our results show that tumor targeting to HT1080 fibrosarcomas was readily achieved using transcriptional targeting mechanisms. We attribute the relatively high level of gene transfer and expression in HT1080 tumors in vivo to increased viral access to the tumor, presumably due to discontinuities in tumor vasculature and augmented expression from stress-responsive promoters in the hypoxic and inflammatory tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ocak I, Baluk P, Barrett T, McDonald DM, Choyke P . The biologic basis of in vivo angiogenesis imaging. Front Biosci 2007; 12: 3601ā€“3616.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Neri D, Bicknell R . Tumour vascular targeting. Nat Rev Cancer 2005; 5: 436ā€“446.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Gupta K, Kshirsagar S, Li W, Gui L, Ramakrishnan S, Gupta P et al. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 1999; 247: 495ā€“504.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Yan L, Hsu K, Beckman RA . Antibody-based therapy for solid tumors. Cancer J 2008; 14: 178ā€“183.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Ahmed Z, Bicknell R . Angiogenic signalling pathways. Methods Mol Biol 2009; 467: 3ā€“24.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Brahimi-Horn C, Pouyssegur J . The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 2006; 93: E73ā€“E80.

    PubMedĀ  Google ScholarĀ 

  7. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997; 94: 8104ā€“8109.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 2007; 129: 1065ā€“1079.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Karin M . NF-kappaB and cancer: mechanisms and targets. Mol Carcinog 2006; 45: 355ā€“361.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT et al. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res 2004; 10 (12 Pt 1): 4109ā€“4117.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Mees C, Nemunaitis J, Senzer N . Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 2009; 16: 103ā€“112.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Fukumura D, Jain RK . Imaging angiogenesis and the microenvironment. APMIS 2008; 116: 695ā€“715.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 1993; 90: 2812ā€“2816.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Varley AW, Munford RS . Physiologically responsive gene therapy. Mol Med Today 1998; 4: 445ā€“451.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S . Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 1987; 7: 725ā€“737.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Takebe Y, Seiki M, Fujisawa J, Hoy P, Yokota K, Arai K et al. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol 1988; 8: 466ā€“472.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Chen JS, Liu JC, Shen L, Rau KM, Kuo HP, Li YM et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther 2004; 11: 740ā€“747.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. University of Michigan Vector Core [Web Site]. Available at: http://www.med.umich.edu/vcore/Plasmids/pACRSVpLpA(-)loxP-SSP.htm accessed on October 12. 2009.

  19. Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 1999; 96: 7421ā€“7426.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Dioum EM, Clarke SL, Ding K, Repa JJ, Garcia JA . HIF-2alpha-haploinsufficient mice have blunted retinal neovascularization due to impaired expression of a proangiogenic gene battery. Invest Ophthalmol Vis Sci 2008; 49: 2714ā€“2720.

    ArticleĀ  Google ScholarĀ 

  21. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 2009; 324: 1289ā€“1293.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1āˆ’/āˆ’ mice. Nat Genet 2003; 35: 331ā€“340.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Bosma PJ, van den Berg EA, Kooistra T, Siemieniak DR, Slightom JL . Human plasminogen activator inhibitor-1 gene. Promoter and structural gene nucleotide sequences. J Biol Chem 1988; 263: 9129ā€“9141.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Semenza GL, Wang GL . A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12: 5447ā€“5454.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Tian H, McKnight SL, Russell DW . Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 1997; 11: 72ā€“82.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. McKnight SL, Gavis ER, Kingsbury R, Axel R . Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 1981; 25: 385ā€“398.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Parsons WJ, Richardson JA, Graves KH, Williams RS, Moreadith RW . Gradients of transgene expression directed by the human myoglobin promoter in the developing mouse heart. Proc Natl Acad Sci USA 1993; 90: 1726ā€“1730.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Aoki K, Barker C, Danthinne X, Imperiale MJ, Nabel GJ . Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro. Mol Med 1999; 5: 224ā€“231.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Gerard RD, Meidell RS In: Hames BD, Glover D (eds). Adenovirus Vectors in DNA Cloning - A Practical Approach: Mammalian Systems. Oxford University Press: Oxford, 1995, pp 285ā€“307.

    Google ScholarĀ 

  30. Varley AW, Coulthard MG, Meidell RS, Gerard RD, Munford RS . Inflammation-induced recombinant protein expression in vivo using promoters from acute-phase protein genes. Proc Natl Acad Sci USA 1995; 92: 5346ā€“5350.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Garnett CT, Pao CI, Gooding LR . Detection and quantitation of subgroup C adenovirus DNA in human tissue samples by real-time PCR. Methods Mol Med 2007; 130: 193ā€“204.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2008. ISBN 3-900051-07-0 http://www.R-project.org.

  33. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B . The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 2008; 15: 1193ā€“1199.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483ā€“5488.

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397ā€“409.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Hayden MS, West AP, Ghosh S . NF-kappaB and the immune response. Oncogene 2006; 25: 6758ā€“6780.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. DeMeritt IB, Milford LE, Yurochko AD . Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol 2004; 78: 4498ā€“4507.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Liu Q, Muruve DA . Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003; 10: 935ā€“940.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Modlich U, Pugh CW, Bicknell R . Increasing endothelial cell specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene Ther 2000; 7: 896ā€“902.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Post DE, Devi NS, Li Z, Brat DJ, Kaur B, Nicholson A et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin Cancer Res 2004; 10: 8603ā€“8612.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Binley K, Askham Z, Martin L, Spearman H, Day D, Kingsman S et al. Hypoxia-mediated tumour targeting. Gene Ther 2003; 10: 540ā€“549.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Binder BR, Christ G, Gruber F, Grubic N, Hufnagl P, Krebs M et al. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 2002; 17: 56ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Praus M, Wauterickx K, Collen D, Gerard RD . Reduction of tumor cell migration and metastasis by adenoviral gene transfer of plasminogen activator inhibitors. Gene Ther 1999; 6: 227ā€“236.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

We wish to thank Caroline Humphries, Julie Poirot and Fred Kruse for technical help with recombinant virus construction and preparation, Paul Card for preparation of the manuscript and Phil Thorpe for critically reading it. Julia Kozlitina and Alex Pertsemlidis provided statistical advice and performed the Jonckheereā€“Terpstra analysis. Optical imaging was facilitated by the UTSouthwestern Small Animal Imaging Research Program funded by NCI U24 CA126608. This work was supported by a Texas Higher Education Coordinating Board Advanced Technology Program grant and by NIH R01 CA115935 to RDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Gerard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogg, R., Garcia, J. & Gerard, R. Adenoviral targeting of gene expression to tumors. Cancer Gene Ther 17, 375ā€“386 (2010). https://doi.org/10.1038/cgt.2010.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.1

Keywords

This article is cited by

Search

Quick links