Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor

Abstract

Genetic instability of cancer cells generates resistance after initial responses to chemotherapeutic agents. Several oncolytic viruses have been designed to exploit specific signatures of cancer cells, such as important surface markers or pivotal signaling pathways for selective replication. It is less likely for cancer cells to develop resistance given that mutations in these cancer signatures would negatively impact tumor growth and survival. However, as oncolytic viral vectors are large particles, they suffer from inefficient extravasation from tumor blood vessels. Their ability to reach cancer cells is an important consideration in achieving specific oncolytic targeting and potential vector replication. Our previous studies indicated that the Sindbis viral vectors target tumor cells by the laminin receptor. Here, we present evidence that modulating tumor vascular leakiness, using VEGF and/or metronomic chemotherapy regimens, significantly enhances tumor vascular permeability and directly enhances oncolytic Sindbis vector targeting in tumor models. Because host-derived vascular endothelium cells are genetically stable and less likely to develop resistance to chemotherapeutics, a combined metronomic chemotherapeutics and oncolytic vector regimen should provide a new approach for cancer therapy. This mechanism could explain the synergistic treatment outcomes observed in clinical trials of combined therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Iijima Y, Ohno K, Ikeda H, Sawai K, Levin B, Meruelo D . Cell-specific targeting of a thymidine kinase/ganciclovir gene therapy system using a recombinant Sindbis virus vector. Int J Cancer 1999; 80: 110–118.

    Article  CAS  Google Scholar 

  2. Ohno K, Meruelo D . Retrovirus vectors displaying the IgG-binding domain of protein A. Biochem Mol Med 1997; 62: 123–127.

    Article  CAS  Google Scholar 

  3. Ohno K, Sawai K, Iijima Y, Levin B, Meruelo D . Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 1997; 15: 763–767.

    Article  CAS  Google Scholar 

  4. Sawai K, Meruelo D . Cell-specific transfection of choriocarcinoma cells by using Sindbis virus hCG expressing chimeric vector. Biochem Biophys Res Commun 1998; 248: 315–323.

    Article  CAS  Google Scholar 

  5. Marcato P, Shmulevitz M, Lee PW . Connecting reovirus oncolysis and Ras signaling. Cell Cycle 2005; 4: 556–559.

    Article  CAS  Google Scholar 

  6. O'Shea CC . Viruses—seeking and destroying the tumor program. Oncogene 2005; 24: 7640–7655.

    Article  CAS  Google Scholar 

  7. Tseng JC, Levin B, Hurtado A, Yee H, Perez de Castro I, Jimenez M et al. Systemic tumor targeting and killing by Sindbis viral vectors. Nat Biotechnol 2004; 22: 70–77.

    Article  CAS  Google Scholar 

  8. Carmeliet P . Angiogenesis in life, disease and medicine. Nature 2005; 438: 932–936.

    Article  CAS  Google Scholar 

  9. Ribatti D, Nico B, Crivellato E, Vacca A . The structure of the vascular network of tumors. Cancer Lett 2007; 248: 18–23.

    Article  CAS  Google Scholar 

  10. McDonald DM, Baluk P . Significance of blood vessel leakiness in cancer. Cancer Res 2002; 62: 5381–5385.

    CAS  PubMed  Google Scholar 

  11. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998; 95: 4607–4612.

    Article  CAS  Google Scholar 

  12. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 1992; 52: 6553–6560.

    CAS  PubMed  Google Scholar 

  13. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55: 3752–3756.

    CAS  PubMed  Google Scholar 

  14. Liwnicz BH, Wu SZ, Tew Jr JM . The relationship between the capillary structure and hemorrhage in gliomas. J Neurosurg 1987; 66: 536–541.

    Article  CAS  Google Scholar 

  15. Van den Brenk HA, Crowe M, Kelly H, Stone MG . The significance of free blood in liquid and solid tumours. Br J Exp Pathol 1977; 58: 147–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tseng JC, Levin B, Hirano T, Yee H, Pampeno C, Meruelo D . In vivo antitumor activity of Sindbis viral vectors. J Natl Cancer Inst 2002; 94: 1790–1802.

    Article  CAS  Google Scholar 

  17. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH . High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 1992; 66: 4992–5001.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ardini E, Pesole G, Tagliabue E, Magnifico A, Castronovo V, Sobel ME et al. The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution. Mol Biol Evol 1998; 15: 1017–1025.

    Article  CAS  Google Scholar 

  19. Menard S, Tagliabue E, Colnaghi MI . The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 1998; 52: 137–145.

    Article  CAS  Google Scholar 

  20. Griffin DE, Hardwick JM . Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 1997; 51: 565–592.

    Article  CAS  Google Scholar 

  21. Griffin DE, Hardwick JM . Perspective: virus infections and the death of neurons. Trends Microbiol 1999; 7: 155–160.

    Article  CAS  Google Scholar 

  22. Kerr DA, Larsen T, Cook SH, Fannjiang YR, Choi E, Griffin DE et al. BCL-2 and BAX protect adult mice from lethal Sindbis virus infection but do not protect spinal cord motor neurons or prevent paralysis. J Virol 2002; 76: 10393–10400.

    Article  CAS  Google Scholar 

  23. Levine B, Huang Q, Isaacs JT, Reed JC, Griffin DE, Hardwick JM . Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 1993; 361: 739–742.

    Article  CAS  Google Scholar 

  24. Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S . Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 1993; 67: 6439–6446.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tseng JC, Zanzonico PB, Levin B, Finn R, Larson SM, Meruelo D . Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med 2006; 47: 1136–1143.

    CAS  PubMed  Google Scholar 

  26. Tseng JC, Daniels G, Meruelo D . Controlled propagation of replication-competent Sindbis viral vector using suicide gene strategy. Gene Therapy 2009; 16: 291–296.

    Article  CAS  Google Scholar 

  27. Kerbel RS, Kamen BA . The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004; 4: 423–436.

    Article  CAS  Google Scholar 

  28. Tseng JC, Hurtado A, Yee H, Levin B, Boivin C, Benet M et al. Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 2004; 64: 6684–6692.

    Article  CAS  Google Scholar 

  29. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF . Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.

    Article  CAS  Google Scholar 

  30. Belotti D, Vergani V, Drudis T, Borsotti P, Pitelli MR, Viale G et al. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 1996; 2: 1843–1849.

    CAS  Google Scholar 

  31. Grant DS, Williams TL, Zahaczewsky M, Dicker AP . Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer 2003; 104: 121–129.

    Article  CAS  Google Scholar 

  32. Ng SS, Figg WD, Sparreboom A . Taxane-mediated antiangiogenesis in vitro: influence of formulation vehicles and binding proteins. Cancer Res 2004; 64: 821–824.

    Article  CAS  Google Scholar 

  33. Pasquier E, Honore S, Pourroy B, Jordan MA, Lehmann M, Briand C et al. Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Res 2005; 65: 2433–2440.

    Article  CAS  Google Scholar 

  34. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA . Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4: 915–924.

    Article  CAS  Google Scholar 

  35. Brown LF, Dvorak AM, Dvorak HF . Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and to many other types of disease. Am Rev Respir Dis 1989; 140: 1104–1107.

    Article  CAS  Google Scholar 

  36. Weis SM, Cheresh DA . Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005; 437: 497–504.

    Article  CAS  Google Scholar 

  37. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191.

    Article  CAS  Google Scholar 

  38. Ferrara N . VEGF as a therapeutic target in cancer. Oncology 2005; 69 (Suppl 3): 11–16.

    Article  CAS  Google Scholar 

  39. Ong HT, Trejo TR, Pham LD, Oberg AL, Russell SJ, Peng KW . Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol Ther 2009; 17: 1012–1021.

    Article  CAS  Google Scholar 

  40. Liu TC, Castelo-Branco P, Rabkin SD, Martuza RL . Trichostatin A and oncolytic HSV combination therapy shows enhanced antitumoral and antiangiogenic effects. Mol Ther 2008; 16: 1041–1047.

    Article  CAS  Google Scholar 

  41. Yoo JY, Kim JH, Kwon YG, Kim EC, Kim NK, Choi HJ et al. VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther 2007; 15: 295–302.

    Article  CAS  Google Scholar 

  42. Thorne SH, Tam BY, Kirn DH, Contag CH, Kuo CJ . Selective intratumoral amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumor efficacy. Mol Ther 2006; 13: 938–946.

    Article  CAS  Google Scholar 

  43. Libertini S, Iacuzzo I, Perruolo G, Scala S, Ierano C, Franco R et al. Bevacizumab increases viral distribution in human anaplastic thyroid carcinoma xenografts and enhances the effects of E1A-defective adenovirus dl922-947. Clin Cancer Res 2008; 14: 6505–6514.

    Article  CAS  Google Scholar 

  44. Mor F, Quintana FJ, Cohen IR . Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 2004; 172: 4618–4623.

    Article  CAS  Google Scholar 

  45. Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004; 10: 1095–1103.

    Article  CAS  Google Scholar 

  46. Kumar S, Gao L, Yeagy B, Reid T . Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther 2008; 10: 371–379.

    PubMed  Google Scholar 

  47. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 2003; 63: 4342–4346.

    CAS  Google Scholar 

  48. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60: 1878–1886.

    CAS  PubMed  Google Scholar 

  49. Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I et al. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science 1986; 232: 643–645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Christine Pampeno for critical reading of this paper and helpful discussions and Mr Seth Nickerson for constructing RD-Sindbis/mPlum vector. US Public Health Service Grants CA100687 and CA68498 from the National Cancer Institute, National Institutes of Health and Department of Health and Human Services supported this study. Funding was also provided by a gift from the Litwin Foundation and a Research and License agreement between NYU and CynVec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Meruelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, JC., Granot, T., DiGiacomo, V. et al. Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther 17, 244–255 (2010). https://doi.org/10.1038/cgt.2009.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.70

Keywords

This article is cited by

Search

Quick links