Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancement of reporter gene detection sensitivity by insertion of specific mini-peptide-coding sequences

Abstract

Two important aspects of gene therapy are to increase the level of gene expression and track the gene delivery site and expression, and a sensitive reporter gene may be one of the options for preclinical studies and possibly for human clinical trials. We report the novel concept of increasing the activity of the gene products. With the insertion of the mini-peptide-coding sequence CWDDWLC into the plasmid DNA of a SEAP reporter gene, we observed vast increases in the enzyme activity in vitro in all murine and human cell lines used. In addition, in vivo injection of this CWDDWLC–SEAP-encoding gene resulted in the same increases in reporter gene activity, but these increases did not correspond to alterations in the level of the gene products in the serum. Minor sequence changes in this mini-peptide negate the activity increase of the reporter gene. We report the novel concept of increasing the activity of gene products as another method to improve the reporting sensitivity of reporter genes. This improved reporter gene could complement any improved vector for maximizing the reporter sensitivity. Moreover, this strategy has the potential to be used to discover peptides that improve the activity of therapeutic genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meng Y, Kasai A, Hiramatsu N, Hayakawa K, Yamauchi K, Takeda M et al. Continuous, noninvasive monitoring of local microscopic inflammation using a genetically engineered cell-based biosensor. Lab Invest 2005; 85: 1429–1439.

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Fei Z, Ren J, Sun R, Liu Z, Sheng Z et al. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunol 2008; 9: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hauck ES, Zou S, Scarfo K, Nantz MH, Hecker JG . Whole animal in vivo imaging after transient, nonviral gene delivery to the rat central nervous system. Mol Ther 2008; 16: 1857–1864.

    Article  CAS  PubMed  Google Scholar 

  4. Balza E, Mortara L, Sassi F, Monteghirfo S, Carnemolla B, Castellani P et al. Targeted delivery of tumor necrosis factor-alpha to tumor vessels induces a therapeutic T-cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin. Clin Cancer Res 2006; 8: 2575–2582.

    Article  Google Scholar 

  5. Enback J, Laakkonen P . Tumour-homing peptides: tools for targeting, imaging and destruction. Biochem Soc Trans 2007; 35 (Part 4): 780–783.

    Article  CAS  PubMed  Google Scholar 

  6. Kawano H, Nishikawa M, Mitsui M, Takahashi Y, Kako K, Yamaoka K et al. Improved anti-cancer effect of interferon gene transfer by sustained expression using CpG-reduced plasmid DNA. Int J Cancer 2007; 121: 401–406.

    Article  CAS  PubMed  Google Scholar 

  7. Li CY, Huang Q, Kung HF . Cytokine and immuno-gene therapy for solid tumors. Cell Mol Immunol 2005; 2: 81–91.

    CAS  PubMed  Google Scholar 

  8. Nathwani AC, Davidoff A, Hanawa H, Zhou J-F, Vanin EF, Nienhuis AW . Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood 2001; 97: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  9. Nienhuis AW . Development of gene therapy for blood disorders. Blood 2008; 111: 4431–4444.

    Article  CAS  PubMed  Google Scholar 

  10. Meager A . Biological assays for interferons. J Immunol Methods 2002; 261: 21–36.

    Article  CAS  PubMed  Google Scholar 

  11. Abdel-Razaq W, Bates TE, Kendall DA . The effects of antidepressants on cyclic AMP response element-driven gene transcription in a model cell system. Biochem Pharmacol 2007; 73: 1995–2003.

    Article  CAS  PubMed  Google Scholar 

  12. Badr CE, Hewett JW, Breakefield XO, Tannous BA . A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS ONE 2007; 2: e571.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hiramatsu N, Kasai A, Hayakawa K, Yao J, Kitamura M . Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucl Acids Res 2006; 34: e93.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hiramatsu N, Kasai A, Meng Y, Hayakawa K, Yao J, Kitamura M . Alkaline phosphatase vs luciferase as secreted reporter molecules in vivo. Anal Biochem 2005; 339: 249–256.

    Article  CAS  PubMed  Google Scholar 

  15. Eto Y, Yoshioka Y, Mukai Y, Okada N, Nakagawa S . Development of PEGylated adenovirus vector with targeting ligand. Int J Pharm 2008; 354: 3–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gao X, Kim KS, Liu D . Nonviral gene delivery: what we know and what is next. AAPS J 2007; 9: E92–E104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB et al. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol 2006; 100: 521–532.

    Article  CAS  PubMed  Google Scholar 

  18. Okada Y, Okada N, Mizuguchi H, Takahashi K, Hayakawa T, Mayumi T et al. Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochim Biophys Acta 2004; 1670: 172–180.

    Article  CAS  PubMed  Google Scholar 

  19. Yew NS . Controlling the kinetics of transgene expression by plasmid design. Adv Drug Delivery Rev 2005; 57: 769–780.

    Article  CAS  Google Scholar 

  20. Fabre EE, Bigey P, Orsini C, Scherman D . Comparison of promoter region constructs for in vivo intramuscular expression. J Gene Med 2006; 8: 636–645.

    Article  CAS  PubMed  Google Scholar 

  21. Edelman GM, Meech R, Owens GC, Jones FS . Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc Natl Acad Sci USA 2000; 97: 3038–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Eastman EM, Schwartz RJ, Draghia-Akli R . Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol 1999; 17: 241–245.

    Article  CAS  PubMed  Google Scholar 

  23. Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 2002; 5: 731–738.

    Article  CAS  PubMed  Google Scholar 

  24. Angov E, Hillier CJ, Kincaid RL, Lyon JA . Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 2008; 3: e2189.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O . Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expr Purif 2008; 59: 94–102.

    Article  CAS  PubMed  Google Scholar 

  26. Hirata K, Nishikawa M, Kobayashi N, Takahashi Y, Takakura Y . Design of PCR-amplified DNA fragments for in vivo gene delivery: size-dependency on stability and transgene expression. J Pharm Sci 2007; 96: 2251–2261.

    Article  CAS  PubMed  Google Scholar 

  27. Craig R, Cutrera J, Zhu S, Xia X, Lee YH, Li S . Administering plasmid DNA encoding tumor vessel-anchored IFN-alpha for localizing gene product within or into tumors. Mol Ther 2008; 16: 901–906.

    Article  CAS  PubMed  Google Scholar 

  28. Li S, Zhang X, Xia X . Regression of tumor growth and induction of long-term antitumor memory by interleukin 12 electro-gene therapy. J Natl Cancer Inst 2002; 94: 762–768.

    Article  CAS  PubMed  Google Scholar 

  29. Craig R, Li S . Function and molecular mechanism of tumor-targeted peptides for delivering therapeutic genes and chemical drugs. Mini Rev Med Chem 2006; 6: 109–120.

    Article  Google Scholar 

  30. Pasqualini R, Ruoslahti E . Organ targeting in vivo using phage display peptide libraries. Nature 1996; 380: 364–366.

    Article  CAS  PubMed  Google Scholar 

  31. Verhaegent M, Christopoulos TK . Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 2002; 74: 4378–4385.

    Article  PubMed  Google Scholar 

  32. Lamfers MLM, Grill J, Dirven CMF, van Beusechem VW, Geoerger B, van den Berg J et al. Potential of the conditionally replicative adenovirus Ad5-{Delta}24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002; 62: 5736–5742.

    CAS  PubMed  Google Scholar 

  33. Witlox AM, van Beusechem VW, Molenaar B, Bras H, Schaap GR, Alemany R et al. Conditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo. Clin Cancer Res 2004; 10: 61–67.

    Article  CAS  PubMed  Google Scholar 

  34. Crameri A, Whitehorn EA, Tate E, Stemmer WP . Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 1996; 14: 315–319.

    Article  CAS  PubMed  Google Scholar 

  35. Brassard DL, Grace MJ, Bordens RW . Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol 2002; 71: 565–581.

    CAS  PubMed  Google Scholar 

  36. Minshull J, Stemmer WP . Protein evolution by molecular breeding. Curr Opin Chem Biol 1999; 3: 284–290.

    Article  CAS  PubMed  Google Scholar 

  37. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Sci Mag 1998; 279: 377–380.

    CAS  Google Scholar 

  38. Bazan-Peregrino M, Seymour L, Harris A . Gene therapy targeting to tumor endothelium. Cancer Gene Ther 2007; 14: 117–127.

    Article  CAS  PubMed  Google Scholar 

  39. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 2006; 13: 638–693.

    Article  Google Scholar 

  40. Colombo G, Curnis F, De Mori GM, Gasparri A, Longoni C, Sacchi A et al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 2002; 277: 47891–47897.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NCI Grant RO1CA120895 and NIH/NIBIB Grant R21EB007208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutrera, J., Dibra, D., Xia, X. et al. Enhancement of reporter gene detection sensitivity by insertion of specific mini-peptide-coding sequences. Cancer Gene Ther 17, 131–140 (2010). https://doi.org/10.1038/cgt.2009.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.54

Keywords

This article is cited by

Search

Quick links