Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of N-Ras by shRNA-expressing plasmid increases sensitivity of HepG2 cells to vincristine-induced growth inhibition

Abstract

Oncogenic ras genes relate to the development of human cancers. In this study, we used a plasmid-mediated short-hairpin RNA (shRNA) targeting N-ras gene to combine with clinical drug vincristine (VCR) for the treatment of human hepatoma cells. Our results showed that anti-N-Ras shRNA expression vector (pCSH1-shNR) knocked down the target mRNA and protein. Higher efficacy on growth inhibition was observed when pCSH1-shNR was combined with VCR. This synergistic effect was associated with abrogation of VCR-induced overexpressions of P-glycoprotein and multidrug resistance-associated protein 1 by pCSH1-shNR through downregulations of N-Ras and total Ras. Western blot analysis showed that pCSH1-shNR-induced downregulations of N-Ras and total Ras were potentiated by VCR. Following Ras downregulation, phosphorylations of ERK1/2 and Akt were dramatically inhibited by combinatory treatment. The data showed that pCSH1-shNR-induced inhibition of nuclear factor-κB was enhanced by VCR. In addition, the combination of pCSH1-shNR and VCR synergistically inhibited the growth of human hepatoma HepG2 in vivo. Our findings suggested that combination of gene-specific therapeutics and appropriate chemotherapeutic agents might be a promising approach for the treatment of human hepatocellular carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Siegel RL et al. Global Cancer Facts & Figures 2007. American Cancer Society: Atlanta, GA, 2007.

    Google Scholar 

  2. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y . siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol 2003; 3: 194–204.

    Article  CAS  Google Scholar 

  3. Arbuthnot P, Thompson LJ . Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. Gastroenterology 2008; 14: 1670–1681.

    CAS  Google Scholar 

  4. Barbacid M . ras Genes. Annu Rev Biochem 1987; 56: 779–827.

    Article  CAS  Google Scholar 

  5. Bourne HR, Sanders DA, McCormick F . The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991; 349: 117–127.

    Article  CAS  Google Scholar 

  6. Bos JL . ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  7. Campbell PM, Der CJ . Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol 2004; 14: 105–114.

    Article  CAS  Google Scholar 

  8. Adjei AA . Blocking oncogenic ras signaling for cancer therapy. J Natl Cancer Inst 2001; 93: 1062–1074.

    Article  CAS  Google Scholar 

  9. Vojtek AB, Der CJ . Increasing complexity of the Ras signaling pathway. J Biol Chem 1998; 273: 19925–19928.

    Article  CAS  Google Scholar 

  10. Sorrentino R, Porcellini A, Spalletti-Cernia D, Lombari V, Vecchio G, Laccetti P . Inhibition of MAPK activity, cell proliferation, and anchorage-independent growth by N-Ras antisense in an N-ras-transformed human cell line. Antisense Nucleic Acid Drug Dev 2001; 11: 349–358.

    Article  CAS  Google Scholar 

  11. Richards CA, Short SA, Thorgeirsson SS, Huber BE . Characterization of a transforming N-ras gene in the human hepatoma cell line Hep G2: additional evidence for the importance of c-myc and ras cooperation in hepatocarcinogenesis. Cancer Res 1990; 50: 1521–1527.

    CAS  PubMed  Google Scholar 

  12. Stone AA, Chambers TC . Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp Cell Res 2000; 254: 110–119.

    Article  CAS  Google Scholar 

  13. VanderWeele DJ, Zhou R, Rudin CM . Akt up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin. Mol Cancer Ther 2004; 3: 1605–1613.

    CAS  PubMed  Google Scholar 

  14. Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW et al. Wnt-1 signaling inhibits apoptosis by activating β-catenin/T cell factor-mediated transcription. J Cell Biol 2001; 152: 87–96.

    Article  CAS  Google Scholar 

  15. Estlin EJ, Ronghe M, Burke GAA, Yule SM . The clinical and cellular pharmacology of vincristine, corticosteroids, l-asparaginase, anthracyclines and cyclophosphamide in relation to childhood acute lymphoblastic leukaemia. Br J Haematol 2000; 110: 780–790.

    Article  CAS  Google Scholar 

  16. Rosenthal S, Kaufman S . Vincristine neurotoxicity. Ann Intern Med 1974; 80: 733–737.

    Article  CAS  Google Scholar 

  17. Huang C, Li M, Chen C, Yao Q . Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 2008; 12: 637–645.

    Article  CAS  Google Scholar 

  18. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  Google Scholar 

  19. Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DS et al. Low-temperature increases the yield of biologically active herring antifreeze protein in pichia pastoris. Protein Expr Purif 2001; 21: 438–445.

    Article  Google Scholar 

  20. Davis RE, Brown KD, Siebenlist U, Staudt LM . Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194: 1861–1874.

    Article  CAS  Google Scholar 

  21. Datta SR . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  Google Scholar 

  22. Birkenkamp KU, Geugien M, Schepers H, Westra J, Lemmink HH, Vellenga E . Constitutive NF-kappa B DNA-binding activity in AML is frequently mediated by a Ras/PI3-K/PKB-dependent pathway. Leukemia 2004; 18: 103–112.

    Article  CAS  Google Scholar 

  23. Bharti AC, Donato N, Singh S, Aggarwal BB . Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003; 101: 1053.

    Article  CAS  Google Scholar 

  24. Eskandarpour M, Kiaii S, Zhu C, Castro J, Sakko AJ, Hansson J . Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 2005; 115: 65–73.

    Article  CAS  Google Scholar 

  25. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 2003; 12: 1413–1426.

    Article  CAS  Google Scholar 

  26. Liu T, Yin JQ, Shang B, Min Z, He H, Jiang J et al. Silencing of hdm2 oncogene by siRNA inhibits p53-dependent human breast cancer. Cancer Gene Ther 2004; 11: 748–756.

    Article  CAS  Google Scholar 

  27. Qin LX, Tang ZY . The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol 2002; 8: 385–392.

    Article  CAS  Google Scholar 

  28. Amir G, Issakov J, Meller I, Sucher E, Peyser A, Cohen IJ et al. Expression of p53 gene product and cell proliferation marker Ki-67 in Ewing's sarcoma: Correlation with clinical outcome. Hum Pathol 2002; 33: 170–174.

    Article  Google Scholar 

  29. Plattner R, Gupta S, Khosravi-Far R, Sato KY, Perucho M, Der CJ et al. Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to Ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells. Oncogene 1999; 18: 1807–1817.

    Article  CAS  Google Scholar 

  30. Krasilnikov MA . Phosphatidylinositol-3 Kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation apoptosis (the progress of which is inhibited by PI3K). Biochemistry (Mosc) 2000; 65: 59–67.

    CAS  Google Scholar 

  31. Sarkar F, Li Y . NF-kappaB: a potential target for cancer chemoprevention and therapy. Front Biosci 2008; 13: 2950–2959.

    Article  CAS  Google Scholar 

  32. Hu L, Shi Y, Hsu J, Gera J, Van Ness B, Lichtenstein A . Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003; 101: 3126.

    Article  CAS  Google Scholar 

  33. Emdad L, Sarkar D, Su ZZ, Randolph A, Boukerche H, Valerie K et al. Activation of the nuclear factor κB pathway by astrocyte elevated gene-1: implications for tumor progression and metastasis. Cancer Res 2006; 66: 1509–1516.

    Article  CAS  Google Scholar 

  34. Kim HJ, Hawke N, Baldwin AS . NF-kappa B and IKK as therapeutic targets in cancer. Cell Death Differ 2006; 13: 738–747.

    Article  CAS  Google Scholar 

  35. Armstrong MB, Bian X, Liu Y, Subramanian C, Ratanaproeksa AB, Shao F et al. Signaling from p53 to NF-kappaB determines the chemotherapy responsiveness of neuroblastoma. Neoplasia 2006; 8: 964–974.

    Article  Google Scholar 

  36. Koong AC . Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res 1994; 54: 5273–5279.

    CAS  PubMed  Google Scholar 

  37. Huang Y, Fang Y, Wu J, Dziadyk JM, Zhu X, Sui M et al. Regulation of Vinca alkaloid-induced apoptosis by NF-κB/IκB pathway in human tumor cells. Mol Cancer Ther 2004; 3: 271–277.

    CAS  PubMed  Google Scholar 

  38. Skobeleva N, Menon S, Weber L, Golemis EA, Khazak V . In vitro and in vivo synergy of MCP compounds with mitogen-activated protein kinase pathway-and microtubule-targeting inhibitors. Mol Cancer Ther 2007; 6: 898.

    Article  CAS  Google Scholar 

  39. Zhai BJ, Shao ZY, Zhao CL, Hu K, Wu F . Development and characterization of multidrug resistant human hepatocarcinoma cell line in nude mice. World J Gastroenterol 2006; 12: 6614–6619.

    Article  CAS  Google Scholar 

  40. Chen B, Jin F, Lu P, Lu XL, Wang PP, Liu YP et al. Effect of mitogen-activated protein kinase signal transduction pathway on multidrug resistance induced by vincristine in gastric cancer cell line MGC803. World J Gastroenterol 2004; 10: 795–799.

    Article  CAS  Google Scholar 

  41. Garcia R, Franklin RA, McCubrey JA . EGF induces cell motility and multi-drug resistance gene expression in breast cancer cells. Cell Cycle 2006; 5: 2820–2826.

    Article  CAS  Google Scholar 

  42. Schaich M, Illmer T . Mdr1 gene expression and mutations in Ras Proto-oncogenes in acute myeloid leukemia. Leuk Lymphoma 2002; 43: 1345–1354.

    Article  CAS  Google Scholar 

  43. Chin KV, Ueda K, Pastan I, Gottesman MM . Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 1992; 255: 459–462.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Grant (no. 30701011), IMB Foundation (no. 20060501) and the National 973 Project (no. 2002CB513108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R-g Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Hx., He, Hw., Zhang, Sh. et al. Suppression of N-Ras by shRNA-expressing plasmid increases sensitivity of HepG2 cells to vincristine-induced growth inhibition. Cancer Gene Ther 16, 693–702 (2009). https://doi.org/10.1038/cgt.2009.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.14

Keywords

Search

Quick links