Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcription factors: their potential as targets for an individualized therapeutic approach to cancer

Abstract

Pro-cancer signals are controlled by the expression and transcription of oncogenes. Transcription of DNA is dependent on the spatially and temporally coordinated interaction between transcriptional machinery (RNA polymerase II, transcription factors (TFs)) and transcriptional regulatory components (promoter elements, enhancers, silencers and locus control regions). Unique TFs have been identified in association with cancer. This review summarizes key oncogene-related TFs and organizes their pro-cancer activity according to the six hallmark functions (self sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death, limitless replicative potential, sustained angiogenesis and metastatic spread) proposed as constituting the infrastructure of the malignant process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L . Global analysis of the genetic network controlling a bacterial cell cycle. Science 2000; 290: 2144–2148.

    CAS  PubMed  Google Scholar 

  2. Blais A, Dynlacht BD . Devising transcriptional regulatory networks operating during the cell cycle and differentiation using ChIP-on-chip. Chromosome Res 2005; 13: 275–288.

    CAS  PubMed  Google Scholar 

  3. Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, Buckland PR et al. Functional analysis of human promoter polymorphisms. Hum Mol Genet 2003; 12: 2249–2254.

    CAS  PubMed  Google Scholar 

  4. Buckland PR, Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC . Strong bias in the location of functional promoter polymorphisms. Hum Mutat 2005; 26: 214–223.

    CAS  PubMed  Google Scholar 

  5. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M . Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004; 431: 308–312.

    CAS  PubMed  Google Scholar 

  6. Tuck DP, Kluger HM, Kluger Y . Characterizing disease states from topological properties of transcriptional regulatory networks. BMC Bioinformatics 2006; 7: 236.

    PubMed  PubMed Central  Google Scholar 

  7. Thomas MC, Chiang CM . The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006; 41: 105–178.

    CAS  PubMed  Google Scholar 

  8. Maston GA, Evans SK, Green MR . Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2006; 7: 29–59.

    CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  10. Karin M, Cao Y, Greten FR, Li ZW . NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    CAS  PubMed  Google Scholar 

  11. Greenstein S, Ghias K, Krett NL, Rosen ST . Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res 2002; 8: 1681–1694.

    CAS  PubMed  Google Scholar 

  12. Xiong HQ, Abbruzzese JL, Lin E, Wang L, Zheng L, Xie K . NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer 2004; 108: 181–188.

    CAS  PubMed  Google Scholar 

  13. Brickman JM, Adam M, Ptashne M . Interactions between an HMG-1 protein and members of the Rel family. Proc Natl Acad Sci USA 1999; 96: 10679–10683.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Campisi J . Cellular senescence as a tumor suppressor mechanism. Trends Cell Biol 2001; 11: S27–S31.

    CAS  PubMed  Google Scholar 

  15. Shaulian E, Karin M . AP-1 in cell proliferation and survival. Oncogene 2001; 20: 2390–2400.

    CAS  PubMed  Google Scholar 

  16. Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 1999; 13: 607–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Ludes-Meyers J, Zhang Y, Munoz-Medellin D, Kim HT, Lu C et al. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 2002; 21: 7680–7689.

    CAS  PubMed  Google Scholar 

  18. Libermann TA, Zerbini LF . Targeting transcription factors for cancer gene therapy. Curr Gene Ther 2006; 6: 17–33.

    CAS  PubMed  Google Scholar 

  19. Koivisto P, Kolmer M, Visakorpi T, Kallioniemi OP . Androgen receptor gene and hormonal therapy failure of prostate cancer. Am J Pathol 1998; 152: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gelmann EP . Molecular biology of the androgen receptor. J Clin Oncol 2002; 20: 3001–3015.

    CAS  PubMed  Google Scholar 

  21. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Crowe DL, Kim R, Chandraratna RA . Retinoic acid differentially regulates cancer cell proliferation via dose-dependent modulation of the mitogen-activated protein kinase pathway. Mol Cancer Res 2003; 1: 532–540.

    CAS  PubMed  Google Scholar 

  23. Chakravarti N, Mathur M, Bahadur S, Kumar Shukla N, Ralhan R . Retinoic acid receptor-alpha as a prognostic indicator in oral squamous cell carcinoma. Int J Cancer 2003; 103: 544–549.

    CAS  PubMed  Google Scholar 

  24. Kaiser PC, Korner M, Kappeler A, Aebi S . Retinoid receptors in ovarian cancer: expression and prognosis. Ann Oncol 2005; 16: 1477–1487.

    CAS  PubMed  Google Scholar 

  25. Gyftopoulos K, Perimenis P, Sotiropoulou-Bonikou G, Sakellaropoulos G, Varakis I, Barbalias GA . Immunohistochemical detection of retinoic acid receptor-alpha in prostate carcinoma: correlation with proliferative activity and tumor grade. Int Urol Nephrol 2000; 32: 263–269.

    CAS  PubMed  Google Scholar 

  26. van der Leede BM, Geertzema J, Vroom TM, Decimo D, Lutz Y, van der Saag PT et al. Immunohistochemical analysis of retinoic acid receptor-alpha in human breast tumors: retinoic acid receptor-alpha expression correlates with proliferative activity. Am J Pathol 1996; 148: 1905–1914.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Knoepfler PS, Cheng PF, Eisenman RN . N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16: 2699–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Luscher B . Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene 2001; 277: 1–14.

    CAS  PubMed  Google Scholar 

  29. Wasson JC, Saylors III RL, Zeltzer P, Friedman HS, Bigner SH, Burger PC et al. Oncogene amplification in pediatric brain tumors. Cancer Res 1990; 50: 2987–2990.

    CAS  PubMed  Google Scholar 

  30. Lee WH, Murphree AL, Benedict WF . Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 1984; 309: 458–460.

    CAS  PubMed  Google Scholar 

  31. Nau MM, Brooks Jr BJ, Carney DN, Gazdar AF, Battey JF, Sausville EA et al. Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci USA 1986; 83: 1092–1096.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hatzi E, Murphy C, Zoephel A, Rasmussen H, Morbidelli L, Ahorn H et al. N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene 2002; 21: 3552–3561.

    CAS  PubMed  Google Scholar 

  33. Dennis JH, Budhram-Mahadeo V, Latchman DS . The Brn-3b POU family transcription factor regulates the cellular growth, proliferation, and anchorage dependence of MCF7 human breast cancer cells. Oncogene 2001; 20: 4961–4971.

    CAS  PubMed  Google Scholar 

  34. Budhram-Mahadeo V, Ndisang D, Ward T, Weber BL, Latchman DS . The Brn-3b POU family transcription factor represses expression of the BRCA-1 anti-oncogene in breast cancer cells. Oncogene 1999; 18: 6684–6691.

    CAS  PubMed  Google Scholar 

  35. Lee SA, Ndisang D, Patel C, Dennis JH, Faulkes DJ, D’Arrigo C et al. Expression of the Brn-3b transcription factor correlates with expression of HSP-27 in breast cancer biopsies and is required for maximal activation of the HSP-27 promoter. Cancer Res 2005; 65: 3072–3080.

    CAS  PubMed  Google Scholar 

  36. Somasundaram K . Tumor suppressor p53: regulation and function. Front Biosci 2000; 5: D424–D437.

    CAS  PubMed  Google Scholar 

  37. Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC . TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004; 157: 247–270.

    Google Scholar 

  38. Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE, Cariati M et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 2004; 101: 7386–7391.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Edelman J, Nemunaitis J . Adenoviral p53 gene therapy in squamous cell cancer of the head and neck region. Curr Opin Mol Ther 2003; 5: 611–617.

    CAS  PubMed  Google Scholar 

  40. Menander K, Chada S, Zumstein L, Merrit J, Nemunaitis J, Clayman G et al. Clinical trials of Advexin® p53 tumor suppressor therapy. Supplement. Clin Cancer Ther. (in press).

  41. Levy DE, Darnell Jr JE . Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651–662.

    CAS  PubMed  Google Scholar 

  42. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    CAS  PubMed  Google Scholar 

  43. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107: 351–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Niu G, Wright KL, Ma Y, Wright GM, Huang M, Irby R et al. Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 2005; 25: 7432–7440.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21: 2000–2008.

    CAS  PubMed  Google Scholar 

  46. Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM . Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 2005; 24: 3236–3245.

    CAS  PubMed  Google Scholar 

  47. Buettner R, Mora LB, Jove R . Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8: 945–954.

    CAS  PubMed  Google Scholar 

  48. Huang M, Dorsey JF, Epling-Burnette PK, Nimmanapalli R, Landowski TH, Mora LB et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 2002; 21: 8804–8816.

    CAS  PubMed  Google Scholar 

  49. Ahonen TJ, Xie J, LeBaron MJ, Zhu J, Nurmi M, Alanen K et al. Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem 2003; 278: 27287–27292.

    CAS  PubMed  Google Scholar 

  50. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    CAS  PubMed  Google Scholar 

  51. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL . Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol Biol Cell 2001; 12: 3328–3339.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ . Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J Biol Chem 2001; 276: 33554–33560.

    CAS  PubMed  Google Scholar 

  53. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114: 241–253.

    CAS  PubMed  Google Scholar 

  54. Im YH, Kim HT, Lee C, Poulin D, Welford S, Sorensen PH et al. EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 2000; 60: 1536–1540.

    CAS  PubMed  Google Scholar 

  55. Takahashi A, Higashino F, Aoyagi M, Yoshida K, Itoh M, Kyo S et al. EWS/ETS fusions activate telomerase in Ewing's tumors. Cancer Res 2003; 63: 8338–8344.

    CAS  PubMed  Google Scholar 

  56. Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE . Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res 2000; 60: 1211–1216.

    CAS  PubMed  Google Scholar 

  57. Hogg A, Bia B, Onadim Z, Cowell JK . Molecular mechanisms of oncogenic mutations in tumors from patients with bilateral and unilateral retinoblastoma. Proc Natl Acad Sci USA 1993; 90: 7351–7355.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu HJ, Cairns P, Hu SX, Knowles MA, Benedict WF . Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumor progression. Int J Cancer 1993; 53: 781–784.

    CAS  PubMed  Google Scholar 

  59. Gouyer V, Gazzeri S, Brambilla E, Bolon I, Moro D, Perron P et al. Loss of heterozygosity at the RB locus correlates with loss of RB protein in primary malignant neuro-endocrine lung carcinomas. Int J Cancer 1994; 58: 818–824.

    CAS  PubMed  Google Scholar 

  60. Sato Y . Transcription factor ETS-1 as a molecular target for angiogenesis inhibition. Hum Cell 1998; 11: 207–214.

    CAS  PubMed  Google Scholar 

  61. Abramovitch R, Tavor E, Jacob-Hirsch J, Zeira E, Amariglio N, Pappo O et al. A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res 2004; 64: 1338–1346.

    CAS  PubMed  Google Scholar 

  62. Qin C, Wilson C, Blancher C, Taylor M, Safe S, Harris AL . Association of ARNT splice variants with estrogen receptor-negative breast cancer, poor induction of vascular endothelial growth factor under hypoxia, and poor prognosis. Clin Cancer Res 2001; 7: 818–823.

    CAS  PubMed  Google Scholar 

  63. Mayo LD, Kessler KM, Pincheira R, Warren RS, Donner DB . Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase. J Biol Chem 2001; 276: 25184–25189.

    CAS  PubMed  Google Scholar 

  64. Dong Z, Nishiyama J, Yi X, Venkatachalam MA, Denton M, Gu S et al. Gene promoter of apoptosis inhibitory protein IAP2: identification of enhancer elements and activation by severe hypoxia. Biochem J 2002; 364 (Part 2): 413–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Freeland K, Boxer LM, Latchman DS . The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 2001; 92: 98–106.

    CAS  PubMed  Google Scholar 

  66. Jean D, Bar-Eli M . Targeting the ATF-1/CREB transcription factors by single chain Fv fragment in human melanoma: potential modality for cancer therapy. Crit Rev Immunol 2001; 21: 275–286.

    CAS  PubMed  Google Scholar 

  67. Shi Q, Le X, Abbruzzese JL, Peng Z, Qian CN, Tang H et al. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 2001; 61: 4143–4154.

    CAS  PubMed  Google Scholar 

  68. Zannetti A, Del Vecchio S, Carriero MV, Fonti R, Franco P, Botti G et al. Coordinate up-regulation of Sp1 DNA-binding activity and urokinase receptor expression in breast carcinoma. Cancer Res 2000; 60: 1546–1551.

    CAS  PubMed  Google Scholar 

  69. Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Haruma K, Kajiyama G et al. The level of a transcription factor Sp1 is correlated with the expression of EGF receptor in human gastric carcinomas. Biochem Biophys Res Commun 1992; 189: 1342–1348.

    CAS  PubMed  Google Scholar 

  70. Chiefari E, Brunetti A, Arturi F, Bidart JM, Russo D, Schlumberger M et al. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2002; 2: 35.

    PubMed  PubMed Central  Google Scholar 

  71. Lou Z, O’Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ . Down-regulation of overexpressed sp1 protein in human fibrosarcoma cell lines inhibits tumor formation. Cancer Res 2005; 65: 1007–1017.

    CAS  PubMed  Google Scholar 

  72. Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL, Xie K . Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res 2004; 64: 2030–2038.

    CAS  PubMed  Google Scholar 

  73. Sporn MB . The war on cancer. Lancet 1996; 347: 1377–1381.

    CAS  PubMed  Google Scholar 

  74. Davidson B, Reich R, Goldberg I, Gotlieb WH, Kopolovic J, Berner A et al. Ets-1 messenger RNA expression is a novel marker of poor survival in ovarian carcinoma. Clin Cancer Res 2001; 7: 551–557.

    CAS  PubMed  Google Scholar 

  75. Bieche I, Tozlu S, Girault I, Onody P, Driouch K, Vidaud M et al. Expression of PEA3/E1AF/ETV4, an Ets-related transcription factor, in breast tumors: positive links to MMP2, NRG1 and CGB expression. Carcinogenesis 2004; 25: 405–411.

    CAS  PubMed  Google Scholar 

  76. Gilliland DG . The diverse role of the ETS family of transcription factors in cancer. Clin Cancer Res 2001; 7: 451–453.

    CAS  PubMed  Google Scholar 

  77. Benz CC, O’Hagan RC, Richter B, Scott GK, Chang CH, Xiong X et al. HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene 1997; 15: 1513–1525.

    CAS  PubMed  Google Scholar 

  78. Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Reich R . PEA3 is the second Ets family transcription factor involved in tumor progression in ovarian carcinoma. Clin Cancer Res 2003; 9: 1412–1419.

    CAS  PubMed  Google Scholar 

  79. Myers E, Hill ADK, Kelly G, McDermott EW, O’Higgins NJ, Young LS . A positive role for PEA3 in HER2-mediated breast tumor progression. Br J Cancer 2006; 95: 1404–1409.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ, Hassell JA . The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol 2001; 11: 1739–1748.

    CAS  PubMed  Google Scholar 

  81. Liu Y, Borchert GL, Phang JM . Polyoma enhancer activator 3, an ets transcription factor, mediates the induction of cyclooxygenase-2 by nitric oxide in colorectal cancer cells. J Biol Chem 2004; 279: 18694–18700.

    CAS  PubMed  Google Scholar 

  82. Iwasaka C, Tanaka K, Abe M, Sato Y . Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascular endothelial cells. J Cell Physiol 1996; 169: 522–531.

    CAS  PubMed  Google Scholar 

  83. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS . Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987; 236: 582–585.

    CAS  PubMed  Google Scholar 

  84. Chen Z, Fisher RJ, Riggs CW, Rhim JS, Lautenberger JA . Inhibition of vascular endothelial growth factor-induced endothelial cell migration by ETS1 antisense oligonucleotides. Cancer Res 1997; 57: 2013–2019.

    CAS  PubMed  Google Scholar 

  85. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N . Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci USA 1995; 92: 8754–8758.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ko JH, Miyoshi E, Noda K, Ekuni A, Kang R, Ikeda Y et al. Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J Biol Chem 1999; 274: 22941–22948.

    CAS  PubMed  Google Scholar 

  87. Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA . Activated signal transduction kinases frequently occupy target genes. Science 2006; 313: 533–536.

    CAS  PubMed  Google Scholar 

  88. Kel A, Voss N, Jauregui R, Kel-Margoulis O, Wingender E . Beyond microarrays: finding key transcription factors controlling signal transduction pathways. BMC Bioinformatics 2006; 7 (Suppl 2): S13.

    PubMed  PubMed Central  Google Scholar 

  89. Janes KA, Yaffe MB . Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 2006; 7: 820–828.

    CAS  PubMed  Google Scholar 

  90. de Caestecker MP, Piek E, Roberts AB . Role of transforming growth factor-beta signaling in cancer. J Natl Cancer Inst 2000; 92: 1388–1402.

    CAS  PubMed  Google Scholar 

  91. Luo K, Yuan J, Shan Y, Li J, Xu M, Cui Y et al. Activation of transcriptional activities of AP1 and SRE by a novel zinc finger protein ZNF445. Gene 2006; 367: 89–100.

    CAS  PubMed  Google Scholar 

  92. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR . Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 2007; 3: 166–173.

    CAS  PubMed  Google Scholar 

  93. Eder I, Hoffman J, Rogatsch H, Schafer G, Zopf D, Bartsch G et al. Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 2002; 9: 117–125.

    CAS  PubMed  Google Scholar 

  94. Halmos B, Huettner C, Kocher O, Ferenczi K, Karp D, Tene D . Down-regulation and antiproliferative role of C/EBP in lung cancer. Cancer Res 2002; 62: 528–534.

    CAS  PubMed  Google Scholar 

  95. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature 2001; 414: 457–462.

    CAS  PubMed  Google Scholar 

  96. Hashiya N, Jo N, Aoki M, Matsumoto K, Nakamura T, Sata Y et al. In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation 2004; 109: 3035–3041.

    CAS  PubMed  Google Scholar 

  97. Lee R, Hench J, Ruvkun G . Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 2001; 11: 1950–1957.

    CAS  PubMed  Google Scholar 

  98. Vincent K, Shyu K, Luo Y, Magner M, Tio R, Jiang C et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1a/VP16 hybrid transcription factor. Circulation 2000; 102: 2255–2261.

    CAS  PubMed  Google Scholar 

  99. Richardson P, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    CAS  PubMed  Google Scholar 

  100. Manshouri T, Yang Y, Lin H, Stass SA, Glassman AB, Keating MJ et al. Downregulation of RAR alpha in mice by antisense transgene leads to a compensatory increase in RAR beta and RAR gamma and development of lymphoma. Blood 1997; 89: 2507–2515.

    CAS  PubMed  Google Scholar 

  101. Leong PL, Xi S, Drenning SD, Dyer KF, Wentzel AL, Lerner EC et al. Differential function of STAT5 isoforms in head and neck cancer growth control. Oncogene 2002; 21: 2846–2853.

    CAS  PubMed  Google Scholar 

  102. Nishizaki M, Meyn RE, Levy LB, Atkinson EN, White RA, Roth JA et al. Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clin Cancer Res 2001; 7: 2887–2897.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Nemunaitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mees, C., Nemunaitis, J. & Senzer, N. Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 16, 103–112 (2009). https://doi.org/10.1038/cgt.2008.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.73

This article is cited by

Search

Quick links