Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Validation of tissue-specific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo

Abstract

A trans-splicing ribozyme that can specifically reprogram human telomerase reverse transcriptase (hTERT) RNA was previously suggested as a useful tool for tumor-targeted gene therapy. In this study, we applied transcriptional targeting with the RNA replacement approach to target liver cancer cells by combining a liver-selective promoter with an hTERT-mediated cancer-specific ribozyme. To validate effects of this system in vivo, we constructed an adenovirus encoding for the hTERT-targeting trans-splicing ribozyme under the control of a liver-selective phosphoenolpyruvate carboxykinase promoter. We observed that intratumoral injection of this virus produced selective and efficient regression of tumors that had been subcutaneously inoculated with hTERT-positive liver cancer cells in mice. Importantly, the trans-splicing reaction worked equally well in a nude mouse model of hepatocarcinoma-derived peritoneal carcinomatosis, inducing the highly specific expression of a transgene, and moreover, the efficient regression of the hTERT-positive liver tumors with minimal liver toxicity when systemically delivered with the adenovirus. In addition to the observed hTERT-dependent therapeutic gene induction, significant reductions in the levels of hTERT RNA (75%) were also observed. In conclusion, this study demonstrates that a cancer-specific RNA replacement approach using trans-splicing ribozyme with a tissue-selective promoter represents a promising strategy for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sullenger BA, Cech TR . Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 1994; 371: 619–622.

    Article  CAS  PubMed  Google Scholar 

  2. Jones JT, Lee SW, Sullenger BA . Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nat Med 1996; 2: 643–648.

    Article  CAS  PubMed  Google Scholar 

  3. Lewin AS, Hauswirth WW . Ribozyme gene therapy: applications for molecular medicine. Trends Mol Med 2001; 7: 221–228.

    Article  CAS  PubMed  Google Scholar 

  4. Long MB, Jones III JP, Sullenger BA, Byun J . Ribozyme-mediated revision of RNA and DNA. J Clin Invest 2003; 112: 312–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fiammengo R, Jaschke A . Nucleic acid enzymes. Curr Opin Biotechnol 2005; 16: 614.

    CAS  PubMed  Google Scholar 

  6. Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA . Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science 1998; 280: 1593–1596.

    Article  CAS  PubMed  Google Scholar 

  7. Phylactou LA, Darrah C, Wood MJ . Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet 1998; 18: 378–381.

    Article  CAS  PubMed  Google Scholar 

  8. Rogers CS, Vanoye CG, Sullenger BA, George Jr AL . Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin Invest 2002; 110: 1783–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shin KS, Sullenger BA, Lee SW . Ribozyme-mediated induction of apoptosis in human cancer cells by targeted repair of mutant p53 RNA. Mol Ther 2004; 10: 365–372.

    Article  CAS  PubMed  Google Scholar 

  10. Kastanos E, Hjiantoniou E, Phylactou LA . Restoration of protein synthesis in pancreatic cancer cells by trans-splicing ribozymes. Biochem Biophys Res Commun 2004; 322: 930–934.

    Article  CAS  PubMed  Google Scholar 

  11. Kwon BS, Jung HS, Song MS, Cho KS, Kim SC, Kimm K et al. Specific regression of human cancer cells by ribozyme-mediated targeted replacement of tumor-specific transcript. Mol Ther 2005; 12: 824–834.

    Article  CAS  PubMed  Google Scholar 

  12. Hong SH, Jeong JS, Lee YJ, Jung HI, Cho KS, Kim CM et al. In vivo Reprogramming of hTERT by trans-splicing ribozyme to target tumor cells. Mol Ther 2008; 16: 74–80.

    Article  CAS  PubMed  Google Scholar 

  13. Jeong JS, Lee SW, Hong SH, Lee YJ, Jung HI, Cho KS et al. Antitumor effects of systemically delivered adenovirus harboring trans-splicing ribozyme in intrahepatic colon cancer mouse model. Clin Cancer Res 2008; 14: 281–290.

    Article  CAS  PubMed  Google Scholar 

  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  15. Yui J, Chiu CP, Lansdorp PM . Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood 1998; 91: 3255–3262.

    CAS  PubMed  Google Scholar 

  16. Forsyth NR, Wright WE, Shay JW . Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 2002; 69: 188–197.

    Article  CAS  PubMed  Google Scholar 

  17. Kotoula V, Hytiroglou P, Pyrpasopoulou A, Saxena R, Thung SN, Papadimitriou CS . Expression of human telomerase reverse transcriptase in regenerative and precancerous lesions of cirrhotic livers. Liver 2002; 22: 57–69.

    Article  CAS  PubMed  Google Scholar 

  18. Fukazawa T, Maeda Y, Sladek FM, Owen-Schaub LB . Development of a cancer-targeted tissue-specific promoter system. Cancer Res 2004; 64: 363–369.

    Article  CAS  PubMed  Google Scholar 

  19. Song MS, Lee SW . Cancer-selective induction of cytotoxicity by tissue-specific expression of targeted trans-splicing ribozyme. FEBS Lett 2006; 580: 5033–5043.

    Article  CAS  PubMed  Google Scholar 

  20. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  21. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90: 785–795.

    Article  CAS  PubMed  Google Scholar 

  22. Smith LL, Coller HA, Roberts JM . Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 2003; 5: 474–479.

    Article  CAS  PubMed  Google Scholar 

  23. Roesler WJ, McFie PJ, Dauvin C . The liver-enriched transcription factor D-site-binding protein activates the promoter of the phosphoenolpyruvate carboxykinase gene in hepatoma cells. J Biol Chem 1992; 267: 21235–21243.

    CAS  PubMed  Google Scholar 

  24. Jaffe HA, Danel C, Longenecker G, Metzger M, Setoguchi Y, Rosenfeld MA et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet 1992; 1: 372–378.

    Article  CAS  PubMed  Google Scholar 

  25. Hendrie PC, Russell DW . Gene targeting with viral vectors. Mol Ther 2005; 12: 9–17.

    Article  CAS  PubMed  Google Scholar 

  26. Homma H, Doi T, Mezawa S, Takada K, Kukitsu T, Oku T et al. A novel arterial infusion chemotherapy for the treatment of patients with advanced pancreatic carcinoma after vascular supply distribution via superselective embolization. Cancer 2000; 89: 303–313.

    Article  CAS  PubMed  Google Scholar 

  27. Crettaz J, Berraondo P, Mauleon I, Ochoa L, Shankar V, Barajas M et al. Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice. Hepatology 2006; 44: 623–632.

    Article  CAS  PubMed  Google Scholar 

  28. Lee JS, Thorgeirsson SS . Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 2004; 127: S51–S55.

    Article  CAS  PubMed  Google Scholar 

  29. Greenberg RA, Allsopp RC, Chi L, Morin GB, Dephino RA . Expression of mouse telomerase reverse transcriptase during development differentiation and proliferation. Oncogene 1998; 16: 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  30. Horikawa I, Chiang YJ, Patterson T, Feigenbaum L, Leem SH, Michishita E et al. Differential cis-regulation of human versus mouse TERT gene expression in vivo: identification of a human-specific repressive element. Proc Natl Acad Sci USA 2005; 102: 18437–18442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sadeghi H, Hitt MM . Transcriptionally targeted adenovirus vectors. Curr Gene Ther 2005; 5: 411–427.

    Article  CAS  PubMed  Google Scholar 

  32. Wu L, Johnson M, Sato M . Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol Med 2003; 9: 421–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Folini M, Berg K, Millo E, Villa R, Prasmickaite L, Daidone MG et al. Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res 2003; 63: 3490–3494.

    CAS  PubMed  Google Scholar 

  34. Li S, Rosenberg JE, Donjacour AA, Botchkina IL, Hom YK, Cunha GR et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res 2004; 64: 4833–4840.

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Crothers J, Haqq CM, Blackburn EH . Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J Biol Chem 2005; 280: 23709–23717.

    Article  CAS  PubMed  Google Scholar 

  36. White LK, Wright WE, Shay JW . Telomerase inhibitors. Trends Biotechnol 2001; 19: 114–120.

    Article  CAS  PubMed  Google Scholar 

  37. Jung HS, Lee SW . Ribozyme-mediated selective killing of cancer cells expressing carcinoembryonic antigen RNA by targeted trans-splicing. Biochem Biophys Res Commun 2006; 349: 556–563.

    Article  CAS  PubMed  Google Scholar 

  38. Won YS, Lee SW . Targeted retardation of hepatocarcinoma cells by specific replacement of alpha-fetoprotein RNA. J Biotechnol 2007; 129: 614–619.

    Article  CAS  PubMed  Google Scholar 

  39. Kim A, Bam G, Song MS, Bae CD, Park J, Lee SW . Selective regression of cells expressing mouse cytoskeleton-associated protein 2 transcript by trans-splicing ribozyme. Oligonucleotides 2007; 17: 95–103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kazuhiro Oka (Baylor College of Medicine, Houston, TX, USA) for his kind donation of liver-specific promoter constructs. This work was supported by the Korea Science & Engineering Foundation grants (R01-2004-000-10436-0, M10534000004-06N3400-00410, and for the Medical Research Center for Cancer Molecular Therapy at Dong-A University), and grants from the Health 21 R&D Project (03-PJ1-PG3-21000-0008) and from the National R&D Program for Cancer Control by Korean Ministry of Health & Welfare. MS Song, G Ban, and YS Won are recipients of Brain Korea 21 fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I-H Kim or S-W Lee.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, MS., Jeong, JS., Ban, G. et al. Validation of tissue-specific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo. Cancer Gene Ther 16, 113–125 (2009). https://doi.org/10.1038/cgt.2008.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.64

Keywords

This article is cited by

Search

Quick links