Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR

Abstract

Conditionally replicating adenoviruses (CRAd) ‘armed’ with prodrug-activating genes have the potential to augment the efficacy of virotherapy. An Escherichia coli nitroreductase (NTR) gene (nfsB) was introduced into the E3B region of the systemically active CRAd ONYX-411, to produce ONYX-411NTR, which had single agent oncolytic activity equivalent to unarmed virus in vitro and in vivo. A fluorogenic probe (SN 29884) developed to monitor NTR expression revealed robust, durable NTR expression in ONYX-411NTR infected neoplastic but not primary human cell lines. NTR expression occurred >24 h post-infection in parallel with fiber and was sensitive to ara-C indicating transcriptional linkage to viral replication. A novel NTR prodrug, the 3,5-dinitrobenzamide-2-bromomustard SN 27686, was shown to be more dose potent and selective than CB 1954 and provided a superior bystander effect in 3D multicellular layer cultures. Its water-soluble phosphate ester SN 28343 was substantially more active than CB 1954 against xenografts containing a minority of stable NTR-expressing cells. A single intravenous dose of ONYX-411NTR (108 PFU) to nude mice bearing large H1299 xenografts (>350 mm3) resulted in tumor-specific NTR expression which increased over time. Despite extensive viral spread by day 14, this conservative virus dose and schedule was unable to control such well-established tumors. However, subsequent administration of SN 28343 resulted in the majority of mice (62.5%) being tumor-free on day 120.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001; 1: 130–141.

    Article  CAS  PubMed  Google Scholar 

  2. Liu T-C, Kirn D . Systemic efficacy with oncolytic virus therapeutics: clinical proof of concept and future directions. Cancer Res 2007; 67: 429–432.

    CAS  PubMed  Google Scholar 

  3. Hawkins LK, Lemoine NR, Kirn D . Oncolytic biotherapy: a novel therapeutic platform. Lancet Oncol 2002; 3: 17–26.

    CAS  PubMed  Google Scholar 

  4. Mullen JT, Tanabe KK . Viral oncolysis. Oncologist 2002; 7: 106–119.

    CAS  PubMed  Google Scholar 

  5. Nemunaitis J, Edelman J . Selectively replicating viral vectors. Cancer Gene Ther 2002; 9: 987–1000.

    CAS  PubMed  Google Scholar 

  6. Ring CJ . Cytolytic viruses as potential anti-cancer agents. J Gen Virol 2002; 83: 491–502.

    PubMed  Google Scholar 

  7. Dobbelstein M . Replicating adenoviruses in cancer therapy. Curr Top Microbiol Immunol 2004; 273: 291–334.

    CAS  PubMed  Google Scholar 

  8. Green NK, Seymour LW . Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 2002; 9: 1036–1042.

    CAS  PubMed  Google Scholar 

  9. Post DE, Khuri FR, Simons JW, Van Meir EG . Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003; 14: 933–946.

    CAS  PubMed  Google Scholar 

  10. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    CAS  PubMed  Google Scholar 

  11. White E . Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 2001; 20: 7836–7846.

    CAS  PubMed  Google Scholar 

  12. Shenk T . Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds). Fields Virology, 3rd edn. Raven Publishers: Philadelphia, 1996 pp 2111–2148.

    Google Scholar 

  13. Nadeau I, Kamen A . Production of adenovirus vector for gene therapy. Biotechnol Adv 2003; 20: 475–489.

    CAS  PubMed  Google Scholar 

  14. Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ . Production and formulation of adenovirus vectors. Adv Biochem Eng Biotech 2005; 99: 193–260.

    CAS  Google Scholar 

  15. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    CAS  PubMed  Google Scholar 

  16. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    CAS  PubMed  Google Scholar 

  17. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication- selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001; 8: 89–98.

    CAS  PubMed  Google Scholar 

  18. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    CAS  PubMed  Google Scholar 

  19. Johnson L, Shen L, Boyle L, Kunich J, Pandey K, Lemmon M et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Can Cell 2002; 1: 325–337.

    CAS  Google Scholar 

  20. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    CAS  PubMed  Google Scholar 

  21. Hahn WC, Weinberg RA . Modelling the molecular circuitry of cancer. Nat Rev Cancer 2002; 2: 331–341.

    CAS  PubMed  Google Scholar 

  22. Martelli F, Livingston DM . Regulation of endogenous E2F1 stability by the retinoblastoma family proteins. Proc Natl Acad Sci USA 1999; 96: 2858–2863.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Parr MJ, Manome Y, Tanaka T, Wen P, Kufe DW, Kaelin Jr WG et al. Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nat Med 1997; 3: 1145–1149.

    CAS  PubMed  Google Scholar 

  24. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    CAS  PubMed  Google Scholar 

  25. Sherr CJ . The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 2000; 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  26. Sherr CJ . The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2: 731–737.

    CAS  PubMed  Google Scholar 

  27. Lu K, Shih C, Teicher BA . Expression of pRB, cyclin/cyclin-dependent kinases and E2F1/DP-1 in human tumor lines in cell culture and in xenograft tissues and response to cell cycle agents. Cancer Chemother Pharmacol 2000; 46: 293–304.

    CAS  PubMed  Google Scholar 

  28. Zhan J, Gao Y, Wang W, Shen A, Aspelund A, Young M et al. Tumor-specific intravenous gene delivery using oncolytic adenoviruses. Cancer Gene Ther 2005; 12: 19–25.

    CAS  PubMed  Google Scholar 

  29. Oosterhoff D, van Beusechem VW . Conditionally replicating adenoviruses as anticancer agents and ways to improve their efficacy. J Exp Ther Oncol 2004; 4: 37–57.

    CAS  PubMed  Google Scholar 

  30. Hermiston TW, Kuhn I . Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9: 1022–1035.

    CAS  PubMed  Google Scholar 

  31. Hermiston T . Fighting fire with fire: attacking the complexity of human tumors with armed therapeutic viruses. Curr Opin Mol Ther 2002; 4: 334–342.

    CAS  PubMed  Google Scholar 

  32. Wisher M . Biosafety and product release testing issues relevant to replication-competent oncolytic viruses. Cancer Gene Ther 2002; 9: 1056–1061.

    CAS  PubMed  Google Scholar 

  33. Denny WA . Prodrug strategies in cancer therapy. Eur J Med Chem 2001; 36: 577–595.

    CAS  PubMed  Google Scholar 

  34. Greco O, Dachs GU . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187: 22–36.

    CAS  PubMed  Google Scholar 

  35. Dachs GU, Tupper J, Tozer GM . From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Antican Drugs 2005; 16: 349–359.

    CAS  Google Scholar 

  36. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–1333.

    CAS  PubMed  Google Scholar 

  37. Wildner O, Morris JC, Vahanian NN, Ford Jr H, Ramsey WJ, Blaese RM . Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999; 6: 57–62.

    CAS  PubMed  Google Scholar 

  38. Rogulski KR, Wing MS, Paielli DL, Gilbert JD, Kim JH, Freytag SO . Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    CAS  PubMed  Google Scholar 

  39. Wildner O, Morris JC . The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res 2000; 60: 4167–4174.

    CAS  PubMed  Google Scholar 

  40. Aghi M, Hochberg F, Breakefield XO . Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000; 2: 148–164.

    CAS  PubMed  Google Scholar 

  41. Niculescu-Duvaz I, Cooper RG, Stribbling SM, Heyes JA, Metcalfe JA, Springer CJ . Recent developments in gene-directed enzyme prodrug therapy (GDEPT) for cancer. Curr Opin Mol Ther 1999; 1: 480–486.

    CAS  PubMed  Google Scholar 

  42. Denny WA . Nitroreductase-based GDEPT. Curr Pharm Des 2002; 8: 1349–1361.

    CAS  PubMed  Google Scholar 

  43. Siim BG, Denny WA, Wilson WR . Nitro reduction as an electronic switch for bioreductive drug activation. Oncol Res 1997; 9: 357–369.

    CAS  PubMed  Google Scholar 

  44. Bridgewater JA, Springer CJ, Knox RJ, Minton NP, Michael NP, Collins MK . Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer 1995; 31A: 2362–2370.

    CAS  PubMed  Google Scholar 

  45. Bridgewater JA, Knox RJ, Pitts JD, Collins MK, Springer CJ . The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum Gene Ther 1997; 8: 709–717.

    CAS  PubMed  Google Scholar 

  46. Wilson WR, Pullen SM, Hogg A, Helsby NA, Hicks KO, Denny WA . Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Res 2002; 62: 1425–1432.

    CAS  PubMed  Google Scholar 

  47. McNeish IA, Gilligan MG, Green NK, Roberts SM, Kerr DJ, Friedlos F et al. Virally-directed enzyme prodrug therapy using retrovirally delivered E. coli nitroreductase and CB 1954. Br J Cancer 1998; 78: 155–156.

    Google Scholar 

  48. McNeish IA, Green NK, Gilligan MG, Ford MJ, Mautner V, Young LS et al. Virus directed enzyme prodrug therapy for ovarian and pancreatic cancer using retrovirally delivered E. coli nitroreductase and CB1954. Gene Ther 1998; 5: 1061–1069.

    CAS  PubMed  Google Scholar 

  49. Palmer DH, Milner AE, Kerr DJ, Young LS . Mechanism of cell death induced by the novel enzyme-prodrug combination, nitroreductase/CB1954, and identification of synergism with 5-fluorouracil. Br J Cancer 2003; 89: 944–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Friedlos F, Court S, Ford M, Denny WA, Springer C . Gene-directed enzyme prodrug therapy: quantitative bystander cytotoxicity and DNA damage induced by CB1954 in cells expressing bacterial nitroreductase. Gene Ther 1998; 5: 105–112.

    CAS  PubMed  Google Scholar 

  51. Green NK, Youngs DJ, Neoptolemos JP, Friedlos F, Knox RJ, Springer CJ et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther 1997; 4: 229–238.

    CAS  PubMed  Google Scholar 

  52. Grove JI, Searle PF, Weedon SJ, Green NK, McNeish IA, Kerr DJ . Virus-directed enzyme prodrug therapy using CB1954. Antican Drug Des 1999; 14: 461–472.

    CAS  Google Scholar 

  53. Djeha AH, Hulme A, Dexter MT, Mountain A, Young LS, Searle PF et al. Expression of Escherichia coli B nitroreductase in established human tumor xenografts in mice results in potent antitumoral and bystander effects upon systemic administration of the prodrug CB1954. Cancer Gene Ther 2000; 7: 721–731.

    CAS  PubMed  Google Scholar 

  54. Djeha AH, Thomson TA, Leung H, Searle PF, Young LS, Kerr DJ et al. Combined adenovirus-mediated nitroreductase gene delivery and CB1954 treatment: a well-tolerated therapy for established solid tumors. Mol Ther 2001; 3: 233–240.

    CAS  PubMed  Google Scholar 

  55. Weedon SJ, Green NK, McNeish IA, Gilligan MG, Mautner V, Wrighton CJ et al. Sensitisation of human carcinoma cells to the prodrug CB1954 by adenovirus vector-mediated expression of E. coli nitroreductase. Int J Cancer 2000; 86: 848–854.

    CAS  PubMed  Google Scholar 

  56. Chung-Faye G, Palmer D, Anderson D, Clark J, Downes M, Baddeley J et al. Virus-directed, Enzyme Prodrug Therapy with Nitroimidazole Reductase: A Phase I and Pharmacokinetic Study of its Prodrug, CB1954. Clin Cancer Res 2001; 7: 2662–2668.

    CAS  PubMed  Google Scholar 

  57. Searle PF, Chen M-J, Hu L, Race PR, Lovering AL, Grove JI et al. Nitroreductase: a prodrug-activating enzyme for cancer gene therapy. Clin Exp Pharmacol Physiol 2004; 31: 811–816.

    CAS  PubMed  Google Scholar 

  58. Palmer DH, Mautner V, Mirza D, Oliff S, Gerritsen W, van Jr dS et al. Virus-directed enzyme prodrug therapy: intratumoral administration of a replication-deficient adenovirus encoding nitroreductase to patients with resectable liver cancer. J Clin Oncol 2004; 22: 1546–1552.

    CAS  PubMed  Google Scholar 

  59. Helsby NA, Atwell GJ, Yang S, Palmer BD, Anderson RF, Pullen SM et al. Aziridinyldinitrobenzamides: synthesis and structure-activity relationships for activation by E. coli nitroreductase. J Med Chem 2004; 47: 3295–3307.

    CAS  PubMed  Google Scholar 

  60. Mehta LK, Hobbs S, Chen S, Knox RJ, Parrick J . Phthalimide analogs of CB 1954: synthesis and bioactivation. Antican Drugs 1999; 10: 777–783.

    CAS  Google Scholar 

  61. Helsby NA, Ferry DM, Patterson AV, Pullen SM, Wilson WR . 2-amino metabolites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. Br J Cancer 2004; 90: 1084–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lukashev AN, Fuerer C, Chen MJ, Searle P, Iggo R . Late expression of nitroreductase in an oncolytic adenovirus sensitizes colon cancer cells to the prodrug CB1954. Hum Gene Ther 2005; 16: 1473–1483.

    CAS  PubMed  Google Scholar 

  63. Kestell P, Pruijn FB, Siim BG, Palmer BD, Wilson WR . Pharmacokinetics and metabolism of the nitrogen mustard bioreductive drug 5-[N,N-bis(2-chloroethyl)amino]-2,4-dinitrobenzamide (SN 23862) and the corresponding aziridine (CB 1954) in KHT tumour-bearing mice. Cancer Chemother Pharmacol 2000; 46: 365–374.

    CAS  PubMed  Google Scholar 

  64. Tang MH, Helsby NA, Wilson WR, Tingle MD . Aerobic 2- and 4-nitroreduction of CB 1954 by human liver. Toxicology 2005; 216: 129–139.

    CAS  PubMed  Google Scholar 

  65. Jiang Y, Han J, Yu C, Vass SO, Searle PF, Browne P et al. Design, synthesis, and biological evaluation of cyclic and acyclic nitrobenzylphosphoramide mustards for E. coli nitroreductase activation. J Med Chem 2006; 49: 4333–4343.

    CAS  PubMed  Google Scholar 

  66. Hu L, Yu C, Jiang Y, Han J, Li Z, Browne P et al. Nitroaryl phosphoramides as novel prodrugs for E. coli nitroreductase activation in enzyme prodrug therapy. J Med Chem 2003; 46: 4818–4821.

    CAS  PubMed  Google Scholar 

  67. Hay MP, Anderson RF, Ferry DM, Wilson WR, Denny WA . Synthesis and evaluation of nitroheterocyclic carbamate prodrugs for use with nitroreductase-mediated gene-directed enzyme prodrug therapy. J Med Chem 2003; 46: 5533–5545.

    CAS  PubMed  Google Scholar 

  68. Hay MP, Atwell GJ, Wilson WR, Pullen SM, Denny WA . Structure-activity relationships for 4-nitrobenzyl carbamates of 5-aminobenz[e]indoline minor groove alkylating agents as prodrugs for GDEPT in conjunction with E. coli nitroreductase. J Med Chem 2003; 46: 2456–2466.

    CAS  PubMed  Google Scholar 

  69. Atwell GJ, Yang S, Pruijn FB, Pullen SM, Hogg A, Patterson AV et al. Synthesis and structure-activity relationships for 2,4-dinitrobenzamide-5-mustards as prodrugs for the E. coli nfsB nitroreductase in gene therapy. J Med Chem 2007; 50: 1197–1212.

    CAS  PubMed  Google Scholar 

  70. Anlezark GM, Melton RG, Sherwood RF, Wilson WR, Denny WA, Palmer BD et al. Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem Pharmacol 1995; 50: 609–618.

    CAS  PubMed  Google Scholar 

  71. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Ther 2001; 8: 1142–1148.

    CAS  PubMed  Google Scholar 

  72. Denny WA, Atwell GJ, Roberts PB, Anderson RF, Boyd M, Lock CJ et al. Hypoxia-selective antitumor agents. 6 4-(Alkylamino)nitroquinolines: a new class of hypoxia-selective cytotoxins. J Med Chem 1992; 35: 4832–4841.

    CAS  PubMed  Google Scholar 

  73. Schumann M, Dobbelstein M . Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny. Cancer Res 2006; 66: 1282–1288.

    PubMed  Google Scholar 

  74. Stoscheck CM . Quantitation of protein. Meth Enzymol 1990; 182: 50–68.

    CAS  Google Scholar 

  75. Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. Clin Cancer Res 2007; 13: 3922–3932.

    CAS  PubMed  Google Scholar 

  76. Hicks KO, Ohms SJ, van Zijl PL, Denny WA, Hunter PJ, Wilson WR . An experimental and mathematical model for the extravascular transport of a DNA intercalator in tumours. Br J Cancer 1997; 76: 894–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Denny WA, Atwell GJ, Yang S, Wilson WR, Patterson AV, Helsby NA . Novel nitrophenyl mustard and nitrophenylaziridine alcohols and their corresponding phosphates and their use as targeted cytotoxic agents. World Intellectual Property Organisation, International Publication Number WO 2005/043471 A1.

  78. Horwitz MS . Adenoviruses. In: Fields BN, Knipe DM, Howley PM (eds). Fields Virology, 3rd edn. Raven Publishers: Philadelphia, 1996, pp 2149–2171.

    Google Scholar 

  79. Friedlos F, Denny WA, Palmer BD, Springer CJ . Mustard prodrugs for activation by Escherichia coli nitroreductase in gene-directed enzyme prodrug therapy. J Med Chem 1997; 40: 1270–1275.

    CAS  PubMed  Google Scholar 

  80. Helsby NA, Wheeler SJ, Pruijn FB, Palmer BD, Yang S, Denny WA et al. Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2,4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN 23862: distinct mechanisms of bioreductive activation. Chem Res Toxicol 2003; 16: 469–478.

    CAS  PubMed  Google Scholar 

  81. Johansson E, Parkinson G, Denny WA, Neidle S . Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form. J Med Chem 2003; 46: 4009–4020.

    CAS  PubMed  Google Scholar 

  82. Wilson WR, Pullen SM, Hogg A, Hobbs SM, Pruijn FB, Hicks KO . In vitro and in vivo models for evaluation of GDEPT: quantifying bystander killing in cell cultures and tumors. In: Springer CJ (ed). Suicide Gene Therapy: Methods and Reviews. Humana Press: Totowa, 2003 pp 403–432.

    Google Scholar 

  83. Workman P, Morgan JE, Talbot K, Wright KA, Donaldson J, Twentyman PR . CB 1954 revisited. II. Toxicity and antitumour activity. Cancer Chemother Pharmacol 1986; 16: 9–14.

    CAS  PubMed  Google Scholar 

  84. Chen MJ, Green NK, Reynolds GM, Flavell JR, Mautner V, Kerr DJ et al. Enhanced efficacy of Escherichia coli nitroreductase/CB1954 prodrug activation gene therapy using an E1B-55K-deleted oncolytic adenovirus vector. Gene Ther 2004; 11: 1126–1136.

    CAS  PubMed  Google Scholar 

  85. Shen BH, Hermiston TW . Effect of hypoxia on Ad5 infection, transgene expression and replication. Gene Ther 2005; 12: 902–910.

    CAS  PubMed  Google Scholar 

  86. Pipiya T, Sauthoff H, Huang YQ, Chang B, Cheng J, Heitner S et al. Hypoxia reduces adenoviral replication in cancer cells by downregulation of viral protein expression. Gene Ther 2005; 12: 911–917.

    CAS  PubMed  Google Scholar 

  87. Brown JM, Wilson WR . Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer 2004; 4: 437–447.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yongchuan Gu for assistance with the pharmacokinetic study, Alison Hogg and Chenbo Wu, for technical assistance with growth delay studies, Dr Shangjin Yang and Graham Atwell for synthesis of CB 1954, SN 27686 and SN 28343 and Dr Leonard Post (Onyx Pharmaceuticals Inc.) for helpful council. This study was funded by grant 01/027 from the Health Research Council of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Patterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singleton, D., Li, D., Bai, S. et al. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR. Cancer Gene Ther 14, 953–967 (2007). https://doi.org/10.1038/sj.cgt.7701088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701088

Keywords

This article is cited by

Search

Quick links