Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioreductive prodrug PR-104 improves the tumour distribution and titre of the nitroreductase-armed oncolytic adenovirus ONYX-411NTR leading to therapeutic benefit

Abstract

Advances in the field of cancer immunotherapy have stimulated renewed interest in adenoviruses as oncolytic agents. Clinical experience has shown that oncolytic adenoviruses are safe and well tolerated but possess modest single-agent activity. One approach to improve the potency of oncolytic viruses is to utilise their tumour selectivity to deliver genes encoding prodrug-activating enzymes. These enzymes can convert prodrugs into cytotoxic species within the tumour; however, these cytotoxins can interfere with viral replication and limit utility. In this work, we evaluated the activity of a nitroreductase (NTR)-armed oncolytic adenovirus ONYX-411NTR in combination with the clinically tested bioreductive prodrug PR-104. Both NTR-expressing cells in vitro and xenografts containing a minor population of NTR-expressing cells were highly sensitive to PR-104. Pharmacologically relevant prodrug exposures did not interfere with ONYX-411NTR replication in vitro. In vivo, prodrug administration increased virus titre and improved virus distribution within tumour xenografts. Colonisation of tumours with high ONYX-411NTR titre resulted in NTR expression and prodrug activation. The combination of ONYX-411NTR with PR-104 was efficacious against HCT116 xenografts, whilst neither prodrug nor virus were active as single agents. This work highlights the potential for future clinical development of NTR-armed oncolytic viruses in combination with bioreductive prodrugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of activation of 3,5-dinitrobenzamide mustards to cytotoxic metabolites by enzymatic reduction.
Fig. 2: NTR-dependent and hypoxia-dependent bystander effects of dinitrobenzamide mustards.
Fig. 3: Effect of acute prodrug exposure on titre of ONYX-411 in infected cells.
Fig. 4: Effect of prodrug on intratumour ONYX-411NTR replication.
Fig. 5: Combined efficacy of ONYX-411NTR with PR-104 against HCT116 xenografts.
Fig. 6: Intratumour activation of PR-104 by i.v. administered ONYX-411NTR.

Similar content being viewed by others

References

  1. Macedo N, Miller DM, Haq R, Kaufman HL. Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer. 2020;8:1486.

    Article  Google Scholar 

  2. Peter M, Kühnel F. Oncolytic adenovirus in cancer immunotherapy. Cancers. 2020;12:1–23.

    Article  CAS  Google Scholar 

  3. Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology. 2019;8. https://doi.org/10.1080/2162402X.2019.1596006.

  4. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14:642–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.

    Article  CAS  PubMed  Google Scholar 

  6. Oh E, Choi IK, Hong JW, Yun CO. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget. 2017;8:4730–46.

    Article  PubMed  Google Scholar 

  7. Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K, et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther. 2012;19:988–98.

    Article  CAS  PubMed  Google Scholar 

  8. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34:2619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18:689–706.

    Article  CAS  PubMed  Google Scholar 

  10. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H, et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther. 2003;14:425–33.

    Article  CAS  PubMed  Google Scholar 

  11. Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther. 2020;213:107586.

    Article  CAS  PubMed  Google Scholar 

  12. Vähä-Koskela M, Hinkkanen A. Tumor restrictions to oncolytic virus. Biomedicines. 2014;2:163–94.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Singleton DC, Li D, Bai SY, Syddall SP, Smaill JB, Shen Y, et al. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR. Cancer Gene Ther. 2007;14:953–67.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Kale V, Chen M. Gene-directed enzyme prodrug therapy. AAPS J. 2015;17:102–10.

    Article  CAS  PubMed  Google Scholar 

  15. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–401.

    Article  CAS  PubMed  Google Scholar 

  16. Fillat C, Carrio M, Cascante A, Sangro B. Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ganciclovir system: fifteen years of application. Curr Gene Ther. 2003;3:13–26.

    Article  CAS  PubMed  Google Scholar 

  17. Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA. 1992;89:33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandha HS, Martin LA, Rigg A, Hurst HC, Stamp GW, Sikora K, et al. Genetic prodrug activation therapy for breast cancer: a phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol. 1999;17:2180–9.

    Article  CAS  PubMed  Google Scholar 

  19. Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther. 1997;8:985–1001.

    Article  CAS  PubMed  Google Scholar 

  20. Mowday AM, Dubois LJ, Kubiak AM, Chan-Hyams JVE, Guise CP, Ashoorzadeh A, et al. Use of an optimised enzyme/prodrug combination for Clostridia directedenzyme prodrug therapy induces a significant growth delay in necrotic tumours. Cancer Gene Ther. 2021 Feb 8. https://doi.org/10.1038/s41417-021-00296-7. Epub ahead of print.

  21. Williams EM, Little RF, Mowday AM, Rich MH, Chan-Hyams JV, Copp JN, et al. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J. 2015;471:131–53.

    Article  CAS  PubMed  Google Scholar 

  22. McCart JA, Puhlmann M, Lee J, Hu Y, Libutti SK, Alexander HR, et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther. 2000;7:1217–23.

    Article  CAS  PubMed  Google Scholar 

  23. Wildner O, Morris JC. The role of the E1B 55 kDa gene product in oncolytic adenoviral vectors expressing herpes simplex virus-tk: assessment of antitumor efficacy and toxicity. Cancer Res. 2000;60:4167–74.

    CAS  PubMed  Google Scholar 

  24. Guffey MB, Parker JN, Luckett WS, Gillespie GY, Meleth S, Whitley RJ, et al. Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors. Cancer Gene Ther. 2007;14:45–56.

    Article  CAS  PubMed  Google Scholar 

  25. Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K, et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res. 2007;13:3922–32.

    Article  CAS  PubMed  Google Scholar 

  26. Palmer BD, van Zijl P, Denny WA, Wilson WR. Reductive chemistry of the novel hypoxia-selective cytotoxin 5-[N,N- bis(2-chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem. 1995;38:1229–41.

    Article  CAS  PubMed  Google Scholar 

  27. Palmer BD, Wilson WR, Atwell GJ, Schultz D, Xu XZ, Denny WA. Hypoxia-selective antitumor agents. 9. Structure-activity relationships for hypoxia-selective cytotoxicity among analogs of 5-[N,N-Bis(2-chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem. 1994;37:2175–84.

    Article  CAS  PubMed  Google Scholar 

  28. Palmer BD, Wilson WR, Anderson RF, Boyd M, Denny WA. Hypoxia-selective antitumor agents. 14. Synthesis and hypoxic cell cytotoxicity of regioisomers of the hypoxia-selective cytotoxin 5-[N,N-bis(2-chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem. 1996;39:2518–28.

    Article  CAS  PubMed  Google Scholar 

  29. Atwell GJ, Yang S, Pruijn FB, Pullen SM, Hogg A, Patterson AV, et al. Synthesis and structure-activity relationships for 2,4-dinitrobenzamide-5 mustards as prodrugs for the Escherichia coli nfsB nitroreductase in gene therapy. J Med Chem. 2007;50:1197–212.

    Article  CAS  PubMed  Google Scholar 

  30. Anlezark GM, Melton RG, Sherwood RF, Wilson WR, Denny WA, Palmer BD, et al. Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase. Biochem Pharm. 1995;50:609–18.

    Article  CAS  PubMed  Google Scholar 

  31. Prosser GA, Copp JN, Mowday AM, Guise CP, Syddall SP, Williams EM, et al. Creation and screening of a multi-family bacterial oxidoreductase library to discover novel nitroreductases that efficiently activate the bioreductive prodrugs CB1954 and PR-104A. Biochem Pharm. 2013;85:1091–103.

    Article  CAS  PubMed  Google Scholar 

  32. Mowday AM, Ashoorzadeh A, Williams EM, Copp JN, Silva S, Bull MR, et al. Rational design of an AKR1C3-resistant analog of PR-104 for enzyme-prodrug therapy. Biochem Pharm. 2016;116:176–87.

    Article  CAS  PubMed  Google Scholar 

  33. Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, et al. A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharm. 2010;65:791–801.

    Article  CAS  Google Scholar 

  34. Abou-Alfa GK, Chan SL, Lin CC, Chiorean EG, Holcombe RF, Mulcahy MF, et al. PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma. Cancer Chemother Pharm. 2011;68:539–45.

    Article  CAS  Google Scholar 

  35. McKeage MJ, Gu Y, Wilson WR, Hill A, Amies K, Melink TJ, et al. A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer. 2011;11:432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McKeage MJ, Jameson MB, Ramanathan RK, Rajendran J, Gu Y, Wilson WR, et al. PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. BMC Cancer. 2012;12:496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, et al. DNA crosslinks in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism and cytotoxicity. Cancer Res. 2009;69:3884–91.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson L, Shen L, Boyle L, Kunich J, Pandey K, Lemmon M, et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell. 2002;1:325–37.

    Article  CAS  PubMed  Google Scholar 

  39. Helsby NA, Ferry DM, Patterson AV, Pullen SM, Wilson WR. 2-amino metabolites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. Br J Cancer. 2004;90:1084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilson WR, Pullen SM, Hogg A, Helsby NA, Hicks KO, Denny WA. Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Res. 2002;62:1425–32.

    CAS  PubMed  Google Scholar 

  41. Harrison D, Sauthoff H, Heitner S, Jagirdar J, Rom WN, Hay JG. Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved- deletion of the viral E1b-19-kD gene increases the viral oncolytic effect. Hum Gene Ther. 2001;12:1323–32.

    Article  CAS  PubMed  Google Scholar 

  42. Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules. 2009;14:4517–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singleton DC, Syddall SP, Bai SY, Li D, Denny WA, Wilson WR, et al. Oncolytic adenovirus ONYX-411-NTR enhances the antitumour efficacy of the bioreductive alkylator prodrug PR-104. EJC Suppl. 2008;6:96

    Article  Google Scholar 

  44. Heise CC, Williams A, Olesch J, Kirn DH. Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther. 1999;6:499–504.

    Article  CAS  PubMed  Google Scholar 

  45. Chen MJ, Green NK, Reynolds GM, Flavell JR, Mautner V, Kerr DJ, et al. Enhanced efficacy of Escherichia coli nitroreductase/CB1954 prodrug activation gene therapy using an E1B-55K-deleted oncolytic adenovirus vector. Gene Ther. 2004;11:1126–36.

    Article  CAS  PubMed  Google Scholar 

  46. Chiocca EA. Oncolytic viruses. Nat Rev Cancer. 2002;2:938–50.

    Article  PubMed  CAS  Google Scholar 

  47. Raki M, Hakkarainen T, Bauerschmitz GJ, Sarkioja M, Desmond RA, Kanerva A, et al. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther. 2007;14:1380–8.

    Article  CAS  PubMed  Google Scholar 

  48. Schepelmann S, Ogilvie LM, Hedley D, Friedlos F, Martin J, Scanlon I, et al. Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing carboxypeptidase G2. Cancer Res. 2007;67:4949–55.

    Article  CAS  PubMed  Google Scholar 

  49. Di Y, Seymour L, Fisher K. Activity of a group B oncolytic adenovirus (ColoAd1) in whole human blood. Gene Ther. 2014;21:440–3.

    Article  CAS  PubMed  Google Scholar 

  50. van der Wiel AMA, Jackson-Patel V, Niemans R, Yaromina A, Liu E, Marcus D, et al. Selectively Targeting Tumor Hypoxia With the Hypoxia-Activated Prodrug CP-506. Mol Cancer Ther. 2021 Oct 8. https://doi.org/10.1158/1535-7163.MCT-21-0406. Epub ahead of print.

  51. Mowday AM, Copp JN, Syddall SP, Dubois LJ, Wang J, Lieuwes NG, et al. E. coli nitroreductase NfsA is a reporter gene for non-invasive PET imaging in cancer gene therapy applications. Theranostics. 2020. https://doi.org/10.7150/thno.46826.

  52. Copp JN, Mowday AM, Williams EM, Guise CP, Ashoorzadeh A, Sharrock AV, et al. Engineering a multifunctional nitroreductase for improved activation of prodrugs and PET probes for cancer gene therapy. Cell Chem Biol. 2017;24:391–403.

    Article  CAS  PubMed  Google Scholar 

  53. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol. 2019;30:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun 2020;11:1–3.

    Article  CAS  Google Scholar 

  55. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ochoa de Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 2020;21:e419–e430.

    Article  CAS  PubMed  Google Scholar 

  57. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Investig. 2017;127:2930–40.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gujar SA, Lee PWK. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front Oncol. 2014;4. https://doi.org/10.3389/fonc.2014.00077.

  59. Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic virotherapy in solid tumors: the challenges and achievements. Cancers. 2021;13:1–28.

    Article  Google Scholar 

  60. Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour hypoxia-mediated immunosuppression: mechanisms and therapeutic approaches to improve cancer immunotherapy. Cells. 2021;10:1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding support was received from the New Zealand Health Research Council, Cancer Society Auckland Northland, University of Auckland and Auckland Medical Research Foundation Doctoral Scholarships.

Author information

Authors and Affiliations

Authors

Contributions

DCS, WRW and AVP conceived and designed the experiments; DCS, AMM, CPG, SPS and SYB performed the experiments; DCS, WRW and AVP analysed the data; DL, AA and JBS contributed reagents/materials/analysis tools; DCS, AMM, CPG and AVP wrote the paper and JBS and WRW reviewed and edited the paper.

Corresponding author

Correspondence to Dean C. Singleton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singleton, D.C., Mowday, A.M., Guise, C.P. et al. Bioreductive prodrug PR-104 improves the tumour distribution and titre of the nitroreductase-armed oncolytic adenovirus ONYX-411NTR leading to therapeutic benefit. Cancer Gene Ther 29, 1021–1032 (2022). https://doi.org/10.1038/s41417-021-00409-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00409-2

Search

Quick links